Диагонали AC и BD трапеции ABCD пересекаются в точке O. Площади треугольников AOD и BOC равны соответственно 16 см² и 9 см². Найдите площадь трапеции.
Площади ∆AOB и ∆DOC равны. Так как площади ∆ABD и ∆ACD равны. У них общее основание и высоты равны.
S(AOB)=S(ABD)-S(AOD)=S(ACD)-S(AOD)=S(COD)
Найдем S(AOB):
S(AOD)≠S(BOC)
Следовательно, у этих треугольников AD и BC основания трапеции.
∆AOD ~ ∆ BOC (углы BOC=AOD как вертикальные), а
стороны пропорциональны их отношение площадей равно квадрату коэффициента подобия k.
S(AOD):S(BOC) =16:9=k2
k=4/3
k=4/3=AO/OC
S(AOB)=0,5•BL•AO
S(BOC)=0,5•BL•OC
S(AOB)/S(BOC) =(0,5•BL•AO)/(0,5•BL•OC)=AO/OC=4/3
S(AOB)/S(BOC) =4/3
S(AOB)=4/3•S(BOC)=4/3•9=12
S(ABCD)=12+12+16+9=49
ответ:49
V₀ = 1600 мл
1. Конус в классической ориентации - основание внизу, вершина вверху.
Пустая часть конуса подобна полному конусу с линейным коэффициентом подобия k=1/2
Площади, например осевого сечения конусов или их полной поверхности будут при этом относиться как k²
Объёмы относятся как k³
Объём верхней пустой части сосуда составит
V₁ = V₀*k³ = 1600/8 = 200 мл
Объём жидкости, налитой до половины составит
V₂ = V₀-V₁ = 1600-200 = 1400 мл
2. Конус перевёрнут - основание вверху, вершина смотрит вниз
В этом случае заполнен только объём V₁ из пункта
V₁ = 200 мл