Сделаем рисунок и обозначим вершины пирамиды АВСА1В1С1. Ребро ВВ1⊥АВС=1 см
Площадь боковой поверхности этой пирамиды - сумма площадей трех трапеций: двух прямоугольных и одной равнобедренной - той, что противолежит ребру ВВ1.
В основаниях пирамиды правильные треугольники - следовательно, длины средней линии всех трапеций равны 0,5•(3+5)=4 см
Площадь прямоугольных граней равна произведению их средней линии на длину высоты пирамиды, т.е. .
S (АВВ1А1)=S (ВВ1С1С)= 4•1=4 см²
Чтобы найти высоту грани АА1С1С, проведем в основаниях пирамиды высоты ВН и В1К и соединим К и Н.
Плоскость прямоугольной трапеции ВНКВ1 перпендикулярна плоскости оснований, т.к. содержит в себе отрезок ВВ1, перпендикулярный обоим основаниям.
Из К опустим высоту КТ.
КН по теореме о трех перпендикулярах перпендикулярна АС и является высотой трапеции АСС1А1.
В прямоугольном треугольнике КТН катет КТ=ВВ1=1см, катет НТ равен разности высот оснований пирамиды.
ВК=(3√3):2
BH=(5√3):2
ТН=2√3):2=√3 см
КН=√(КТ²+НТ²)=√4=2 см
S (АСС1А1)=4*2=8 см²
S(бок)=4+4+8=16 см²
1. Общая формула для выражения радиуса описанной окружности R через сторону правильного n-угольника a:
Тогда для квадрата:
а для правильного пятиугольника:
Т.к. радиус окружности не изменяется, то можем записать:
ответ: сторона правильного пятиугольника, вписанного в ту же окружность примерно 39,9 см
2. Площадь кольца ограниченного двумя концентрическими окружностями равна разности площадей большей и меньшей окружности.
Если обозначить радиус большей окружности через R, а меньшей окружности через r, то площадь кольца равна:
ответ: площадь кольца, ограниченного двумя окружностями равна 40π см²
3. Площадь фигуры, ограниченной дугой окружности и стягивающей её хордой равна разности площадей сектора OAB и треугольника OAB.
ΔOAB равнобедренный с углом при вершине 60°, следовательно углы при основании равны (180° - 60°) / 2 = 60°. Т.е. ΔOAB - равносторонний и радиус окружности R = OA = AB = 4 м.
Площадь равностороннего треугольника выражается через его сторону по формуле:
Площадь сектора круга через угол α стягивающей его дуги и радиус окружности R найдем по формуле:
Площадь заданной фигуры равна:
ответ: Площадь фигуры, ограниченной дугой окружности и стягивающей её хордой примерно 1,45 м²