Площадь параллелограмма Sпар=7*5*sin a=35*sin a
Через подобие треугольников образованных биссектрисами находим соотношение сторон четырехугольника, который одновременно является прямоугольником. Соответственно большая сторона к большей биссектрисе, и меньшая к меньшей биссектрисе, т.е. 1/7 и 1/5.
Находим биссектрисы:
Малая биссектриса B1=5*2*sin a/2.
Большая биссектриса B2=7*2*cos a/2.
Малая сторона А1=2*sin a/2.
Большая сторона А2=2*cos a/2
Площадь прямоугольника Sпр=2*sin a/2.* 2*cos a/2=4*sin a/2.*cos a/2
Соотношение: Sпар/ Sпр=35*sin a/(4*sin a/2.*cos a/2) используя формулу sin 2α = 2sinα cosα
Получаем:
Sпар/ Sпр=35*sin a/(4*sin a/2.*cos a/2)=35*2*(sin a/2.*cos a/2)/(4*sin a/2.*cos a/2)=35/2
ОТВЕТ: Sпар/ Sпр=35/2
5) Периметр квадрата со стороной AM равен 4AM.
4AM=2BC <=> AM=BC/2
Отрезок из прямого угла к гипотенузе, равный ее половине - медиана.
AM - медиана и высота, следовательно △ABC - равнобедренный, острые углы 45.
6) Продолжим перпендикуляр BO до пересечения с AD в точке P.
OBM= 90-OMB =BCM
△ABP=△BCM (по катету и острому углу)
AP=BM=BN => PD=NC
PNCD - прямоугольник, диагонали являются диаметрами описанной окружности.
COP=90, точка O лежит на окружности с диаметром CP.
Вписанный угол NOD опирается на диаметр ND, NOD=90