Урок геометрии по теме "Построение сечений многогранника" 10-й класс
Абакумова Елена Андриановна, учитель математики
Разделы: Математика
Класс: 10
Цели и задачи урока (слайд 1–2)
Повторим геометрические понятия и утверждения
Закрепление навыков построения сечений на примере пирамиды и параллелепипеда.
Обобщение учебного материала по теме через формирование умения применять приёмы построения сечений в новой ситуации
Отработаем умения построения сечений.
Формирование навыков исследовательской работы; в том числе умения синтезировать и анализировать, обобщать, выделять главное.
Формирование специальных умений и навыков, в том числе навыков использования математического языка.
Развитие технического, логического, образно-пространственного мышления учащихся.
Воспитание культуры графического труда.
Материалы и оборудование:
Рабочая тетрадь.
Интерактивная доска
Компьютер.
Ручка, карандаш, резинка.
Раздаточный материал.
Проектор
«Живая математика»
Педагогические средства для решения поставленных задач:
Тип урока: закрепление знаний.
Для повышения эффективности урока и подачи материала в более доступной динамичной форме, использованы слайдовая презентация
Для закрепление знаний материала применены приемы фронтальной работы со слайдом, задана самостоятельная проблемная работа по построению сечений многогранников, стимулирующая саморазвитие учащихся и мотивирующая учащихся на изучение темы «Сечения многогранников» (задачи ЕГЭ).
Ход урока
1. Организационный момент
2. Проверка домашнего задания
(Фронтально, ответы на доске.)
3. Актуализация прежних знаний (повторение аксиом планиметрии, стереометрии и теорем о существовании плоскости, многогранники и их элементы), методы построения сечений.
(Слайды 3–7)
Назовите номер рисунка, на котором изображено сечение параллелепипеда (слайд 8)
Площадь правильного шестиугольника, вписанного в окружность, равна сумме площадей шести правильных треугольников со сторонами, равными радиусу этой окружности. Тогда площадь одного треугольника равна D/6. По формуле эта площадь равна (√3/4)*a², где а=R. Следовательно, √3*R²/4=D/6 => R²=2D√3/9. R=√(2D√3)/3 По Пифагору квадрат диагонали вписанного квадрата равен (2R)²=2а², где а - сторона квадрата. а=2R/√2 = R√2, а площадь - S= а² =2R² . Подставим найденное значение R, тогда сторона вписанного квадрата: а=√(2D√3/9)*√2=√(4D√3)/3. площадь вписанного квадрата: S=a²= 4D√3/9.
Урок геометрии по теме "Построение сечений многогранника" 10-й класс
Абакумова Елена Андриановна, учитель математики
Разделы: Математика
Класс: 10
Цели и задачи урока (слайд 1–2)
Повторим геометрические понятия и утверждения
Закрепление навыков построения сечений на примере пирамиды и параллелепипеда.
Обобщение учебного материала по теме через формирование умения применять приёмы построения сечений в новой ситуации
Отработаем умения построения сечений.
Формирование навыков исследовательской работы; в том числе умения синтезировать и анализировать, обобщать, выделять главное.
Формирование специальных умений и навыков, в том числе навыков использования математического языка.
Развитие технического, логического, образно-пространственного мышления учащихся.
Воспитание культуры графического труда.
Материалы и оборудование:
Рабочая тетрадь.
Интерактивная доска
Компьютер.
Ручка, карандаш, резинка.
Раздаточный материал.
Проектор
«Живая математика»
Педагогические средства для решения поставленных задач:
Тип урока: закрепление знаний.
Для повышения эффективности урока и подачи материала в более доступной динамичной форме, использованы слайдовая презентация
Для закрепление знаний материала применены приемы фронтальной работы со слайдом, задана самостоятельная проблемная работа по построению сечений многогранников, стимулирующая саморазвитие учащихся и мотивирующая учащихся на изучение темы «Сечения многогранников» (задачи ЕГЭ).
Ход урока
1. Организационный момент
2. Проверка домашнего задания
(Фронтально, ответы на доске.)
3. Актуализация прежних знаний (повторение аксиом планиметрии, стереометрии и теорем о существовании плоскости, многогранники и их элементы), методы построения сечений.
(Слайды 3–7)
Назовите номер рисунка, на котором изображено сечение параллелепипеда (слайд 8)
Вспомним, что называем сечением