Точка О - место пересечения биссектрис треугольника АВС. Отрезки биссектрисы, разделённые точкой пресечения биссектрис (точкой О), имеют отношение большего к меньшему как (b+c):а, где а - сторона к которой проведена биссектриса, b и с - боковые стороны угла биссектрисы. Значит в нашем треугольнике ВО/ОД=(АВ+ВС)/АС=2АВ/АС, АО/ОФ=(АВ+АС)/АВ. Пусть ∠АОВ=∠ДОФ=α. Запишем формулы нахождения площадей треугольников АОВ и OФД и сразу разделим их как показано далее по предложенному отношению: S(ΔАОВ) = 0.5·АО·ВО·sinα -------------------------------------- =6:1, S(ΔOФД) = 0.5·ОД·ОФ·sinα
(ВО/ОД)·(АО/ОФ)=6, 2АВ·(АВ+АС)/(АВ·АС)=6, 2АВ+2АС=6АС, АВ=2АС, Итак, АС/АВ=1/2=1:2 - это ответ.
В прямоугольном треугольнике катет противолежащий углу в 30° равен половине гипотенузы.
В прямоугольном треугольнике катет противолежащий углу в 60° равен меньшему катету умноженному на √3.
Сумма углов треугольника равна 180°.
Из условия задачи:
∠C = 90°
∠A = 60°
Тогда ∠B = 180°-90°-60° = 30°.
Гипотенуза (BA) равна 10 см.
Сторона AC противолежащая углу B равному 30° равна половине гипотенузы (BA), то есть 10:2=5 см.
Сторона BC противолежащая углу A равному 60° равна
стороне AC (5 см) умноженной на √3, то есть 5√3.
ответ: сторона BC равна 5√3.