Каждое ребро правильной шестиугольной призмы равно а. Найдите площадь поверхности призмы.
---
Призма называется правильной, если ее боковые ребра перпендикулярны основаниям, а основания – правильные многоугольники.
Все ребра правильной призмы равны, ⇒
каждая из 6 боковых граней – квадрат, площадь которого S=a².
Ѕ(бок)=6а²
Основания правильной шестиугольной призмы - правильные шестиугольники, состоящие из 6 равных правильных треугольников.
Формула площади правильного треугольника S=(a²√3):4 ⇒
Ѕ (осн)•2=2•6•(a²√3):4=3а²√3
Площадь поверхности призмы равна сумме площадей: площади боковой поверхности и двух оснований.
S (призмы)= 6а²*+3•a²√3 или 3а²•(2+√3) ≈11,2а²
По-моему так.
Все ребра пирамиды равны 8.
Рассмотри треугольник АВС - равносторонний. Сечение проходит через середины сторон АВ и ВС, следовательно, ОК - средняя линия. Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны. ОК=4.
Рассмотрим треугольник BSA - равнобедренный. SO является медианой, высотой и биссектрисой.
Рассмотрим треугольник SOA - прямоугольный.
SO^2 = SA^2 - OA^2
SO=корень из 48
Рассмотрим треугольник SHO - прямоугольный.
SH^2 = SO^2 - OH^2
SH=корень из 44
S сеч = 1/2 * OK * SH = 2 корня из 44.
Решение на фотографии. ответ -4