Из острого угла 60° вершины a единичного ромба abcd проведен перпендикуляр к плоскости ромба sa равный стороне ромба. найти расстояние между прямыми sc и ab
Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой.
Плоскость определяется двумя пересекающимися прямыми. В нашем случае плоскость DSC параллельна прямой АВ, так как прямая DC, принадлежащая этой плоскости, параллельна прямой АВ как прямые, содержащие противоположные стороны ромба.
Опустим перпендикуляр АР на прямую CD. АР перпендикулярна и прямой АВ. Соединим точки S и Р.
Прямая SP перпендикулярна прямой СР по теореме о трех перпендикулярах.
Прямая SP принадлежит плоскости PSC. Следовательно, перпендикуляр АН, опущенный из точки А на прямую SP будет расстоянием между прямой АВ и плоскостью PCS, а значит и искомым расстоянием между прямыми АВ и SC.
В прямоугольном треугольнике APD катет
АР = AD*Sin60 = √3/2 (AD = 1 - дано).
В прямоугольном треугольнике ASP гипотенуза SP по Пифагору равна: SP = √(AS²+AP²) = √(1²+3/4) = √7/2. Тогда
АH = AS*AP/SP (как высота из прямого угла прямоугольного треугольника).
1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
Рисунок вам нарисовала. Там все ясно-понятно. Треугольник FAB равносторонний. Все стороны равны, все углы по 60, такой вывод делаем из условия. Сторону этого треугольника обозначаем х. Δ FMA: М = 90 FM - бисектриса, медиана, высота FM = хsina = x√3/2 Чтобы найти угол между мимобегущими, нужно найти угол между паралельными им прямыми, которые пересекаются. Перенесем AC в ML, это будет средняя линия треугольника ABC Чтобы узнать AC найдем диагональ квадрата d² = 2a² Сторона у нас х d² = 2x² d = x√2 ML = x√2/2 ΔFMO₁ (O₁ = 90) MO₁ = x√2/4 MO₁/FM = cos a = x√2/4/x√3/2 = √2/2√3 = √6/6 Не знаю, почему значение не табличное, может я ошиблась, но вроде все правильно было :)
Расстояние равно √21/7.
Объяснение:
Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой.
Плоскость определяется двумя пересекающимися прямыми. В нашем случае плоскость DSC параллельна прямой АВ, так как прямая DC, принадлежащая этой плоскости, параллельна прямой АВ как прямые, содержащие противоположные стороны ромба.
Опустим перпендикуляр АР на прямую CD. АР перпендикулярна и прямой АВ. Соединим точки S и Р.
Прямая SP перпендикулярна прямой СР по теореме о трех перпендикулярах.
Прямая SP принадлежит плоскости PSC. Следовательно, перпендикуляр АН, опущенный из точки А на прямую SP будет расстоянием между прямой АВ и плоскостью PCS, а значит и искомым расстоянием между прямыми АВ и SC.
В прямоугольном треугольнике APD катет
АР = AD*Sin60 = √3/2 (AD = 1 - дано).
В прямоугольном треугольнике ASP гипотенуза SP по Пифагору равна: SP = √(AS²+AP²) = √(1²+3/4) = √7/2. Тогда
АH = AS*AP/SP (как высота из прямого угла прямоугольного треугольника).
АH = 1*(√3/2) /(√7/2) = √21/7.