1)построить поверхности и определить их вид(название).у=5х^2+3z^2.) построить тело ,ограниченное указанными поверхностями: а)у=2х,у=0,х=2,z=xy,z=0.б) х^2+y^2=z^2,x^2+y^2=1,y больше или равно 0,z=больше или равно 0. подробное решение
ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
MABC - правильная треугольная пирамида. MO_|_(ΔABC), O- центр треугольника - точка пересечения медиан, биссектрис, высот
по условию пирамида правильная, => в основании пирамиды правильный треугольник площадь правильного треугольника вычисляется по формуле:
MK_|_AB, CK_|_AB. CK в точке О делится в отношении 2:1, считая от вершины С. прямоугольный ΔМОК: <MOK=90°, MK=5 см, OK=(1/3)*CK CK -высота правильного треугольника вычисляется по формуле:
ΔMOK:<MOK=90°, MK=5 см -гипотенуза ОК=3 см -катет, => МО=4 см. Пифагоров или Египетский треугольник ответ: высота правильной пирамиды 4 см
решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3