Весь угол B=70 градусов C=90 градусам, так как прямой угол Вся сумма углов треугольника =180 градусов, следовательно 70+90=160 и 180-160=20(угол A) Угол A=20 Угол B=70 Угол C=90
DC=1/2 AC , тк катет , лежащий против острого угла в 30 град. равен половине гипотенузы . Следовательно DC= 12/2=6 см . Я провела высоту из угла D . Высота делит угол пополам . Рассмотрим треугольник ADW. Угол DAW=30градусов ; угол DWA=90градусов ; а угол WDA =180-(90+30)=60 , значит угол WDC тоже 60, в сумме 120 . Рассмотрим треугольник ADC . Чтобы узнать угол С , надо 180-(120+30)=30градусов . AD=1/2AC , потому что катет , лежащий против угла в 30 градусов равен половине гипотенузы , значит равен 6 см
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Відповідь:
Пояснення:
ACB=90
ABC=50 .
CAB= 40