Ознаки рівності прямокутних трикутників:
Якщо гіпотенуза й катет одного прямокутного трикутника відповідно рівні гіпотенузі й катету іншого прямокутного трикутника, то такі трикутники рівні.
Якщо катети одного прямокутного трикутника відповідно рівні катетам іншого прямокутного трикутника, то такі трикутники рівні.
Якщо катет і протилежний до нього гострий кут одного прямокутного трикутника відповідно рівні катету і протилежному до нього гострому куту іншого прямокутного трикутника, то такі трикутники рівні.
Объяснение:
Пусть ABC - равнобедренный
∟B = 120 °, АС = 18 см, АК - высота.
В ΔАВС проведем высоту BD к основанию АС.
По свойству равнобедренного треугольника BD - биссектриса и медиана
AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).
∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).
Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):
∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).
Рассмотрим ΔАКС (∟К = 90 °, АК - высота):
АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).
ответ: Высота AK= 9 см
Третий угол треугольника равен 40°.
Объяснение:
Пусть в треугольнике АВС биссектрисы углов А и С пересекаются в точке Р. Тогда, если угол между биссектрисами АРС равен 70°, то на сумму двух других углов в треугольнике АРС остается 180-70 = 110°.
Это сумма половин углов А и С треугольника АВС. Тогда сумма углов А и С должна быть равна 220°, что противоречит свойству треугольника: сумма внутренних углов должна быть равна 180°.
Следовательно, нам дан угол между биссектрисами, смежный с углом АРС, то есть угол АРС = 180° - 70° = 110°. И тогда сумма половин углов А и С равна 70°, сумма целых углов А и С равна 140°, а третий угол треугольника АВС равен 180° - 140° = 40° (по сумме внутренних углов треугольника).