Задача№1.
Дано: АВСД - параллелограмм
АВ=6, АД=9, ∠А=30°
Найти: S парал-ма-?
1. Формула площади параллелограмма S=a*h;
2. Построим высоту к АД из ∠В и поставим точку К. ВК=h-высота. Получили прямоугольный треугольник ΔАВК с ∠А=30°. ВК - это катет, противолежащий углу 30°, значит он равен половине гипотенузы АВ ⇒ВК=АВ÷2=6÷2=3 см.
3. Подставляем значения в формулу площади S=АД*ВК=9*3=27см².
ответ: Площадь параллелограмма составляет 27 см².
Задача№2.
Дано: АВСД-ромб
АС= d1=10см, ВД=d2=18см
Найти: а -стороны ромба
Обозначим точку пересечения диагоналей = К.
Рассмотрим ΔАВК - является прямоугольным ∠К=90°, точка пересечения диагоналей К делит диагонали пополам (свойства ромба), значит АК=АС÷2=10÷2=5см., ВК=ВД÷2=18÷2=9см.
По теореме Пифагора найдем АВ-гипотенуза ΔАВК (сторона ромба)
АВ=√5²+9²=14
ответ: сторона ромба равна14см.
Пусть ребро АА₁ образует со сторонами основания АВ и AD угол в 60°.
Соединяем точку А₁ с точкой D.
В треугольнике АА₁D
AA₁=2 м
AD=1 м
∠A₁AD=60°
По теореме косинусов A₁D²=AA₁²+AD²-2·AA·₁AD·cos60°=4+1-2·2·1(1/2)=3
A₁D=√3 м
Треугольник A₁AD- прямоугольный
по теореме обратной теореме Пифагора:
АА₁²=AD²+A₁D² 2²=1+( √3 )²
A₁D⊥AD
В основании квадрат, стороны квадрата взаимно перпендикулярны
АС⊥AD
Отсюда AD⊥ плоскости A₁CD
ВС || AD
BC ⊥ плоскости A₁CD
ВС⊥A₁C
A₁C перпендикулярна двум пересекающимся прямым ВС и СD плоскости АВСD
По признаку перпендикулярности прямой и плоскости А₁С перпендикуляр к плоскости АВСD
A₁C - высота призмы
A₁C=Н
Из прямоугольного треугольника
A₁DC:
А₁С²=А₁D²-DC²=(√3)²-1=3-1=2
A₁C=Н=√2 м
S(параллелепипеда)=S(осн)·Н=АВ²·Н=1·√2=√2 куб. м