Периметр треугольника KLM = MK + ML + KL По условию KL = KC + LC Отрезки касательных проведенные из одной и той же точки к одной и той же окружности равны. Тогда KC = KA LC = LB Следовательно KL = KC + LC = KA + LB Подставим это в первое равенство Периметр треугольника KLM = MK + ML + KL = = MK + ML + KA + LB = = MK + KA + ML + LB Очевидно что MK + KA = MA ML + LB = MB Тогда Периметр треугольника KLM = MK + ML + KL = MA + MB Последнее выражение (MA + MB ) не зависит от С Следовательно периметр треугольника KLM не зависит от выбора точки С что и требовалось доказать.
Для того, чтобы определить географические координаты точки, возьмите карту с обозначением меридианов и параллелей. Учтите, чем больше будет частота этих линий и подробнее карта, тем точнее вам удастся определить широту и долготу, из которых состоят любые координаты. 2 Чтобы найти широту, используйте горизонтальные линии, начерченные на карте – параллели. Определите, на какой параллели находится ваша точка, и найдите ее значение в градусах. Около каждой горизонтальной параллели есть обозначение в градусах (слева и справа). Если точка расположена прямо на ней, смело делайте вывод о том, что ее широта равна этому значению. 3 Если же выбранное место лежит между двумя параллелями, указанными на карте, определите широту ближайшей к нему параллели и прибавьте к ней длину дуги в градусах до точки. Длину дуги посчитайте при транспортира или примерно, на глаз. Например, если точка посередине между параллелями 30º и 35º, то ее широта будет равна 32,5º. Поставьте обозначение N, если точка расположена над экватором (северная широта) и обозначение S, если она находится под экватором (южная широта). 4 Определить долготу вам меридианы – вертикальные линии на карте. Найдите меридиан, ближе всего расположенный на карте к вашей точке и посмотрите его координаты, указанные сверху и снизу (в градусах). Измерьте с транспортира или прикиньте на глаз длину дуги между этим меридианом и выбранным местом. Прибавьте полученное расстояние в градусах к найденному значению долготы и получите долготу искомой точки.
По условию KL = KC + LC
Отрезки касательных проведенные из одной и той же точки к одной и той же окружности равны.
Тогда
KC = KA
LC = LB
Следовательно KL = KC + LC = KA + LB
Подставим это в первое равенство
Периметр треугольника KLM = MK + ML + KL =
= MK + ML + KA + LB =
= MK + KA + ML + LB
Очевидно что
MK + KA = MA
ML + LB = MB
Тогда
Периметр треугольника KLM = MK + ML + KL = MA + MB
Последнее выражение (MA + MB ) не зависит от С
Следовательно периметр треугольника KLM не зависит от выбора точки С
что и требовалось доказать.