Так как рисунок с расположением точек K, M, N отсутствует, пусть K∈AB; M∈BC; N∈AC. Радиусы в точку касания образуют прямые углы с касательными: OK⊥AB; OM⊥BC; ON⊥AC
Градусная мера дуги окружности равна градусной мере центрального угла, который опирается на эту дугу. ⇒ ∠MON = ∪MN = 110° ∠KON = ∪KN = 120°
1)Использована формула площади трапеции, свойство катета, лежащего против угла в 30 градусов, свойство средней линии трапеции 2)Пусть АВСД данная равнобедренная трапеция. угол В = 135 град.Тогда угол А=180-135=45 град., Пусть ВК и СМ высоты опущенные на основание.АК=1,4см, КД=3,4см. Рассмотрим треуг-к АВК. угол К=90.Тогда уголАВК=90-45=45. Значит треуг-кАВК- равнобедренный и АК=ВК = 1,4см. АК=МД=1,4см по свойству равнобедренной трапеции. Тогда КМ=КД-МД=3,4-1,4=2 см. ВС=КМ=2 см по свойству равнобедренной трапеции. АД=1,4+3,4=4,8 см Тогда площадь S=((a+b)/2)*h S=((2+4,8)/2)*1,4=3,4*1,4=4,76 (см^2)
пусть K∈AB; M∈BC; N∈AC.
Радиусы в точку касания образуют прямые углы с касательными:
OK⊥AB; OM⊥BC; ON⊥AC
Градусная мера дуги окружности равна градусной мере центрального угла, который опирается на эту дугу. ⇒
∠MON = ∪MN = 110°
∠KON = ∪KN = 120°
Сумма углов четырехугольника
(n - 2)*180°=(4 - 2)*180° = 2*180° = 360°
Четырехугольник CMON.
∠С = 360° - ∠ONC - ∠OMC - ∠MON =
= 360° - 90° - 90° - 110°= 70°
Четырехугольник AKON.
∠A = 360° - ∠OKA - ∠ONA - ∠KON =
= 360° - 90° - 90° - 120°= 60°
ΔABC: ∠B = 180° - ∠A - ∠C = 180° - 70° - 60° = 50°
ответ: углы треугольника 50°, 60°, 70°