Как определить по какому признаку равны треугольники? почему если картинка одна в ней треугольники могу явл. равными по 1 2 и 3 призн? как отличать их в . обьясните так, чтобы было понятно даже тупому.
Чтобы доказать равенство треугольников, в них надо найти три пары соответственно равных элементов. Сделайте себе подсказку.
1 признак. в нем вы должны найти по две равные стороны и углу между ними. И сделать вывод о равенстве треугольников.
2 признак. там надо доказать равенство стороны и двух прилежащих к ней углов.
3. самый легкий. Докажете, что три стороны одного равны трем сторонам другого, и треугольники окажутся равными.
Теперь. как искать эти элементы. Они могут быть равны по условию. по свойствам, например, в параллелограмме противоположные стороны равны. Углы. это могут быть вертикальные. Их надо уметь видеть. т.к. о равенстве вертикальных в условии сказано не будет. Дальше.. общую сторону тоже надо уметь подмечать.
Теперь по Вашему вопросу. Почему картинка одна. а применить к ней не один иногда, а несколько признаков можно? Это зависит от мастерства поиска Вашего. Вот что отыщете, то и используете при доказательстве. Отыщете по три равные стороны, окажется, что можно применить третий признак. А заметите, например здесь же две стороны и... ну пусть вертикальные углы, примените первый признак.
Высота проведена к большему основанию. У нас получился прямоугольный треугольник, две стороны нам известны, находим третью по теореме Пифагора: 5²-4²=х² х²=25-16=9 х=3 Проводим высоту из второй вершины к этому же основанию.У нас получается два прямоугольных треугольника. Так трапеция равнобедренная, то гипотенузы равны Высоты одной трапеции равны, следовательно, у нас есть равные катеты Треугольники равны по гипотенузе и катету, значит, неизвестная сторона второго треугольника тоже равна 3 После проведения двух высот у нас получился квадрат, сторона которого равна меньшему основанию.Находим её: 10-3-3=4 Средняя линия равна полусумме оснований: (10+4)/2=7 Площадь трапеции равна полусумме оснований на высоту (10+4)/2 х4=28
Правильный прямоугольник - многоугольник с равными сторонами - это квадрат. Центром окружности, описанной около прямоугольника , является точка пересечения его диагоналей. Сами диагонали являются диаметрами описанной окружности, а их половинки - радиусами. Кроме того, Диагональ квадрата является гипотенузой прямоугольного треугольника, которая делится центром окружности пополам. Гипотенузу можно найти по теореме Пифагора : суммая квадратов катетов равна квадрату гипотенузы. Обозначим гипотенузу D. D*2= 10*2+10*2=200 D=√200, R= 10√2 / 2
Чтобы доказать равенство треугольников, в них надо найти три пары соответственно равных элементов. Сделайте себе подсказку.
1 признак. в нем вы должны найти по две равные стороны и углу между ними. И сделать вывод о равенстве треугольников.
2 признак. там надо доказать равенство стороны и двух прилежащих к ней углов.
3. самый легкий. Докажете, что три стороны одного равны трем сторонам другого, и треугольники окажутся равными.
Теперь. как искать эти элементы. Они могут быть равны по условию. по свойствам, например, в параллелограмме противоположные стороны равны. Углы. это могут быть вертикальные. Их надо уметь видеть. т.к. о равенстве вертикальных в условии сказано не будет. Дальше.. общую сторону тоже надо уметь подмечать.
Теперь по Вашему вопросу. Почему картинка одна. а применить к ней не один иногда, а несколько признаков можно? Это зависит от мастерства поиска Вашего. Вот что отыщете, то и используете при доказательстве. Отыщете по три равные стороны, окажется, что можно применить третий признак. А заметите, например здесь же две стороны и... ну пусть вертикальные углы, примените первый признак.