Задание 2. а)Угол КАВ, образованный касательной АК и хордой АВ, проходящей через точку касания А, равен половине величины дуги АВ, заключённой между его сторонами, центральный угол АОВ тоже опирается на дугу АВ, а угол АСВ- вписанный угол, опирающийся на дугу АВ, поэтому равен половине величины центрального угла.
б)Т.о., углы АСВ и КАВ равны. А т.к. АК и КВ - отрезки касательных, проведенных из одной точки к одной окружности, то АК=КВ, т.е. ΔКАВ- равнобедренный.
в) т.к. по условию АС║КВ, то по свойству внутренних накрест лежащих при указанных параллельных прямых и секущей АВ ∠АВК=∠ВАС. значит, по двум углам треугольники КАВ и АСВ подобны, значит, сходственные стороны у них пропорциональны. АВ/ВС=АК/АС=к- коэффициент пропорциональности , Площадь треугольника АВС равна ВС*АС*sin∠ACB; площадь треугольника КАВ равна
АК*АВ*sin∠КАВ. Синусы равных углов равны. Отношение площадей (АК*АВ*sin∠КАВ)/(BC*АС*sin∠ACB)=АК*АВ/ВС*АС=к²; получается, что от угла не зависит отношение. Это для любого треугольника, а если к тому же треугольник АВС равнобедренный с основанием АВ, то все углы в нем по 60°, т.е. он получается равносторонним. т.е. угол и выбирать не надо по этому условию он уже определен. А из того, что угол равен 60°, следует равенство данных треугольников, значит, отношение их площадей равно единице.
Это легко сосчитать.
Первая монета может упасть двумя орел или решка), и на каждый их них вторая может упасть тоже двумя Всего для двух монет получается 4 события (можно и перечислить - "орел, орел", "орел, решка", "решка, орел", "решка, решка").
Теперь понятно, что на каждое такое событие ТРЕТЬЯ монета может упасть опять-таки двумя Откуда и получается 8 разных вариантов выпадения трех монет.
А подходящим является только 1 событие - все три монеты упали кверху решкой.
Поэтому классическая вероятность такого события равна 1/8.
Интересно вот что. Этот ответ правильный, если монеты РАЗЛИЧНЫ или бросаются ПОСЛЕДОВАТЕЛЬНО. Если все три монеты абсолютно неразличимы и бросаются одновременно, вероятность может оказаться другой :). В самом деле, в этом случае есть следующие возможные события - "3 орла" "2 орла, 1 решка" "2 решки, 1 орел", "3 решки". Однако эти события неравноправны. Так что ...:)