Треугольники abc и obc не лежат в одной плоскости и имеют общую сторону, точки m, h и k - середины соответственно сторон bo, co, ac. отрезок ab пересекает плоскость mkh в точке p. найдите pk, если bc = 8
Из любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр, и притом только один.
Доказательство: предположим, что на плоскости, которой принадлежат и прямая, и точка, таких перпендикуляров существует два. Поскольку точка вне прямой принадлежит обоим перпендикулярам, получаем треугольник с вершиной в этой точке и основанием, расположенном на прямой. Так как оба перпендикуляра составляют с прямой углы по 90° (углы при основании треугольника) плюс угол при вершине, то сумма внутренних углов такого треугольника получается больше 180°, - а это на плоскости осуществить невозможно. Следовательно, наше предположение о том, что через одну точку к данной прямой на плоскости можно провести больше одного перпендикуляра, - не верно и такой перпендикуляр существует только один. Теорема доказана.
PS построения не сложные. - прямая, 2 точки на ней, одна точка вне прямой и два отрезка, соединяющие эту точку с точками на прямой..))) Но, если очень надо, - то файлик внизу с рисунком..)) И еще. Упоминание о том, что все это происходит на плоскости, - желательно. Дело в том, что всем нам с детства знакомы меридианы на географической сетке Земного шара. Так вот каждый меридиан перпендикулярен экватору, и все меридианы сходятся аж в двух точках : в Северном и Южном полюсах
1) нет
2) да
3) нет
4) нет
5) нет
6) нет
7) нет
8) нет
9) нет; да
10) да
11) нет; да
13) да
14) нет
15) 16) да; да
Объяснение:
Параллелограмм - четырехугольник, у которого стороны попарно паралелльны
Свойства параллелограмма:
1) Противолежащие стороны и углы равны
2) Диагонали точкой пересечения делятся попол
ам
3) Биссектриса угла параллелограмма образует р/б ∆
Прямоугольник - параллелограмм, у которого все углы прямые
Свойства прямоугольника:
Те же, что и у параллелограмма 1) 2)
4) Диагонали прямоугольника равны
Ромб - параллелограмм, у которого все стороны равны
Свойства ромба:
Те же, что и у параллелограмма 1) 2)
5) Диагонали ромба взаимно перпендикулярны и делят его углы пополам
Квадрат - прямоугольник, у которого все стороны равны
Свойства квадрата:
Те же, что и прямоугольника и ромба 1) 2) 4) 5)