1) Дано: - правильная треугольная пирамида SABC, - высота пирамиды SO = Н, - угол наклона бокового ребра L к основанию равен α .
Примем сторону основания за а. Проекция AO бокового ребра AS на основание правильной пирамиды равна 2/3 высоты h основания. Из треугольника ASO находим AO = H/tg α. Высота h в 1,5 раза больше АО, то есть h = (3/2)H/tg α = 3H/(2tg α), тогда сторона а основания равна: а = h/(cos30°) = 3H/(2tg α)/(√3/2) = √3H/tg α. Площадь основания So = a²√3/4 = 3√3H²/(4tg² α) кв.ед. Тогда объём пирамиды равен: V = (1/3)SoH = (1/3)*(3√3H²/(4tg² α))*H = √3H³/(4tg² α) куб.ед.
2) Дано: правильная четырёхугольная пирамида SABCД, - высота пирамиды SO = Н, - угол наклона бокового ребра L к основанию равен α .
Половина ОА диагонали АС равна Н/tg α. Тогда сторона а основания а = Н√2/tg α. So = a² = 2H²/(tg² α). V = (1/3)*(2H²/(tg² α))*H = 2H³/(3tg² α).
Можно так. 1) Середина диагонали АС прямоугольника является точкой пересечения диагоналей, а также центром симметриии прямоугольника. Значит точка О делит отрезок РК пополам, тогда в ΔСОР =ΔАОК по двум сторонам и углу между ними (ОР=ОК, АО=ОС и углы РОС и АОК равны как вертикальные). Отсюда РС=АК, а также РСIIАК, Значит АРСК параллелогамм. 2) S(АРСК)=РС*CD, CD=√(AC²-AD²)=√(169-144)=5, PC=AK=4, S(АРСК)=4*5=20. 3) Проведем РМ II CD, РМ=5, КМ=8-4=4, РК=√(РМ²+КМ²)=√(25+16)=√41, 4) По теореме косинусов АК²=АО²+ОК²-2АО*ОК*cos(AOK). АК=4, АО=6,5, ОК=√41/2.
А) Нет
В) Да
С) Да
D) Нет
Объяснение:
Есть правило, которое гласит: Сумма 2 углов треуг. должна быть больше 3 угла треуг. Вот и проверим.
7+2=9. 9=9
5+8=13. 13 больше 6
16+12=28. 28 больше12
5+7=12. 12=12.
Надеюсь :)