Рассмотрим сечение образованное высотой конуса, его образующей и радиусом основания. Это прямоугольный треугольник, в котором гипотенуза (образующая) равна 8, а острый угол между радиусом и образующей равен 30 градусов. Тогда высота конуса Н равна половине гипотенузы, т.е 4, а радиус основания равен гипотенуза умножить на косинус 30 градусов, т.е 4 корня из 3. Объем конуса равен трети площади основания на высоту. В основании круг, т.е его площадь равна Пи умножить на радиус в квадрате, т.е 48 Пи. Тогда Подставляем все найденные величины в формулу и получаем: V = 1/3 * 48 Пи * 4 = 64 Пи (кубических единиц). ответ: 64 Пи.
Проведем прямую "а". Отложим на этой прямой произвольный отрезок АВ и проведем к нему серединный перпендикуляр "b". Для этого проведем две окружности с центрами в точках А и В одинаковыми радиусами R=AB. Проведем прямую "b" через точки пересечения этих окружностей. Это и есть серединный перпендикуляр к отрезку АВ. Отметим одну из точек пересечения окружностей как точка "С". Соединим точку А с точкой С. Тогда АС=(1/2)*АС по построению и угол АСН=30°, так как лежит против катета АН, равного половине гипотенузы (АС=АВ). Следовательно, угол АСD=180°-30°=150°. Требуемый угол построен.
Объяснение:
180-50=130
130/2=65