Дано:
MABCD - правильная пирамида
MO⊥(ABCD)
MA = MB = MC = MD = 10
P(ABCD) = 24√2
-------------------------------------------------------------------------
Найти:
SO - ?
В правильном пирамиде в основании лежит квадрат ABCD, значит мы находим сторону основание квадрата:
AB = BC = CD = AD = P/4 = 24√2 / 4 = 6√2
Далее мы находим диагональ квадрата AC по такой формуле:
AC = AB√2 = 6√2 × √2 = 6×(√2)² = 6×2 = 12
Далее мы находим половину диагонали квадрата в правильной пирамиде:
AO = AC/2 = 12/2 = 6 ⇒ AO = OC = 6
И теперь находим высоту MO по теореме Пифагора:
AM² = AO² + MO² ⇒ MO = √AM² - AO²
MO = √10² - 6² = √100-36 = √64 = 8
ответ: MO = 8
Ну, раз так трудно, я расставлю обозначения.
Если провести линию центров (О1О2) и радиусы в точки касания (О1В и О2С), то получится прямоугольная трапеция (О1О2СВ), то есть сумма центральных углов обеих дуг - дуги ВА и дуги СА между точками касания равна 180 градусов
(то есть угол ВО1А + угол СО2А = 180 градусов).
Если теперь провести общую касательную через точку касания окружностей (пусть это АМ, АМ - перпендикулярно О1О2), то искомый угол ВАС равен сумме двух углов (ВАМ и САМ), каждый из которых измеряется половиной одной из этих дуг (угол ВАМ равен половине угла ВО1А, или, что то же самое, "измеряется" половиной дуги АВ, и со второй дугой АС - аналогично). То есть в сумме они равны 90 градусов (уж и не знаю ,тут надо пояснять :(). ЧТД
ответ: 2,4 см ; 3,2 см
Объяснение:
Катет прилежащий к этому углу будет равен произведению его косинуса и гипотенузы. Это равно 0,6*4 = 2,4 см.
Второй катет равен корню из разности квадратов гипотенузы и первого катета. 4*4-2,4*2,4 = 16-5,76 = 10,24.
Корень из 10,24 = 3,2