Точка s знаходиться на відстані 4 см до площини правильного трикутника і рівновіддалена від йогой вершин p∆=9√3 см . знайдіть відстамь від точки s до вершин трикутника?
Расстояние от точки S до каждой из вершин правильного треугольника АВС равно 5 см,а до плоскости 3 см. Найдите высоту треугольника ----------- Соединим вершины треугольника с точкой Ѕ АЅ=ВЅ=СЅ Если расстояние от точки вне треугольника до его вершин одинаково., то одинаковы проекции наклонных отрезков, соединяющих эту точку с вершинами: значит, вокруг треугольника можно описать окружность, и основание перпендикуляра к плоскости треугольника лежит в центре этой описанной окружности. По условию расстояние до плоскости треугольника 3 см АО=R Треугольник АОЅ- египетский, и АО=4 см( проверьте по т.Пифагора). Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. ⇒ Высота треугольника АН=4:(2/3)=6 см
16 см
Объяснение:
1) Довжини дотичних, проведених до кола з однієї точки, рівні.
Вершини трапеції можна розглядати як ті самі точки, з яких проведені дотичні, які є в даному випадку сторонами трапеції.
2) Отже, на меншій підставі точка дотику відстоїть від вершини на 2 см, а на більшій підставі - на 32 см.
3) Тепер, якщо з вершини меншого підстави опустити перпендикуляр на більшу основу, то вийде прямокутний трикутник:
- його гіпотенуза = 32 + 2 = 34 см - це бічна сторона трапеції;
- горизонтальний катет (різниця між нижньою і верхньою точками торкання) = 32-2 = 30 см;
- вертикальний катет-висота Н, яку треба знайти:
Н = √ (34² - 30²) = √(1156 -900) = √ 256 = 16 см
Відповідь: 16 см
1) Длины касательных, проведённых к окружности из одной точки, равны.
Вершины трапеции можно рассматривать как те самые точки, из которых проведены касательные, являющиеся в данном случае сторонами трапеции.
2) Следовательно, на меньшем основании точка касания отстоит от вершины на 2 см, а на большем основании - на 32 см.
3) Теперь, если из вершины меньшего основания опустить перпендикуляр на большее основание, то получится прямоугольный треугольник:
- его гипотенуза = 32 + 2 = 34 см - боковая сторона;
- горизонтальный катет (разность между нижней и верхней точками касания) = 32 - 2 = 30 см;
- вертикальный катет - высота Н, которую надо найти:
Н = √ (34² - 30²) = √(1156 -900) = √ 256 = 16 см