1) треугольник прямоугольный, т.к. сумма углов треугольника 180 градусов, 180-(25+65)=90-третий угол 2)сумма 2-х острых углов прямоугольного треугольника равна 90 градусов, значит 90-68=22-второй угол 3) т.к. один угол прямоугольного треугольника 60 градусов, то другой - 90-60=30, а против угла=30 лежит меньший катет, равный половине гипотенузы. пусть гипотеза=х,тогда меньший катет-0.5х, получим уравнение х+0.5х=33.6 => х=22.4-гипотеза 4) 9.7-1.5=8.2 5) т.к. прямая пересекает отрезок посередине, то расстояние от прямой до точки N и до точки M - одинаковы, т.е. 14см 6) 1. Если внешний-125, то смежный с ним- 180-125=55, сумма острых углов прямоугольного треугольника равна 90, значит 2-й угол - 90-55=35 2. пусть меньший угол-х, тогда больший-4х,получим уравнение х+4х=90 => х=18,т.е. 1 угол -18, 2-й - 4*18= 72 7) т.к. угол В=60, тогда угол А=90-60=30, ВN-биссектриса угла АВС=>угол NBC= углу АВN=30, рассмотрим треугольник NBC- прямоугольный, значит напротив угла 30 градусов лежит меньший катер, равный половине гипотезы,т.е. гипотеза ВN= 7*2=14, рассмотрим треугольник АВN: угол АВN=30, угол А=30 (по см. ранее)=>треугольник равнобедренный, т.к.углы при основании равны=>стороны ВN= АN=14 АС= СN+ АN=7+14=21
Какие из указанных векторов перпендикулярны?
1) a {2; -6} и b {1; -3} ; 2) m {3; 9} и n {6; -2} ;
3) c {-2; 3} и d {6; 9} ; 4) h {5; -6} и l {5; 6}.
Объяснение:
Два вектора перпендикулярны если их скалярное произведение равняется нулю , х₁*х₂+у₁*у₂=0
1) a {2; -6} и b {1; -3} ,2*1+(-6)*(-3)=20 , 20≠0 , не перпендикулярны ;
2) m {3; 9} и n {6; -2} ;3*6+9*(-2)=18-18=0 , m⊥n ;
3) c {-2; 3} и d {6; 9} , -2*6+3*9=-12+27=15 , 15≠0 , не перпендикулярны ;
4) h {5; -6} и l {5; 6} , 5*5+(-6)*6=25-36=-11 ,-11≠0 ,не перпендикулярны ;