Коло вписане в рівнобічну трапецію ділить точкою дотику бічну сторону на відрізки один яких на 10 см більший за інший знайдіть сторони трапеції якщо її периметр дорівнює 1 м. терміново будь !
Найдите площадь описанной около окружности правильного треугольника,если площадь вписанного в эту окружность квадрата равна 2√3 см².
Дано: S₁=2√3 см² (площадь квадрата вписанной в окружность ).
S = S(Δ) -? S =pr = (3a/2)*r , где a длина стороны правильного треугольника , r - радиус вписанной в треугольник окружности: r = a√3/ 6 ⇒ a =6r /√3 = (2√3) *r . Значит S = (3*2√3 / 2)*r² = (3√3)*r² . С другой стороны по условию площадь квадрата вписанной в окружность S₁= ( 2 r*2r)/2 = 2r² ⇒ r² = S₁/2. * * *или по другому S₁=b² =(r√2)² =2r² * * * Следовательно : S = (3√3)*r² = (3√3)*S₁/2=(3√3)*2√3/2 = 9 (см² ) .
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Дано: S₁=2√3 см² (площадь квадрата вписанной в окружность ).
S = S(Δ) -?
S =pr = (3a/2)*r , где a длина стороны правильного треугольника , r - радиус вписанной в треугольник окружности: r = a√3/ 6 ⇒
a =6r /√3 = (2√3) *r . Значит S = (3*2√3 / 2)*r² = (3√3)*r² . С другой стороны по условию площадь квадрата вписанной в окружность S₁= ( 2 r*2r)/2 = 2r² ⇒ r² = S₁/2. * * *или по другому S₁=b² =(r√2)² =2r² * * *
Следовательно : S = (3√3)*r² = (3√3)*S₁/2=(3√3)*2√3/2 = 9 (см² ) .
ответ : 9 см² .