2) Мы видим, что эти отрезки являются средними линиями получившихся треугольников. По свойству средней линии в треугольнике она равна половине основания. В данном случае основания треугольников - это основания трапеции. Найдем их:
12,8*2 = 25,6 см
19,2*2 = 38,4 см
Проверка:
Средняя линия трапеции равна полусумме оснований:
С.лин. = 38,4+25,6/2 = 64/2 = 32 см. Все сходится.
Теорема гласит, что углы, расположенные при основании любого равнобедренного треугольника, всегда равны. Доказать эту теорему очень просто. Рассмотрим изображенный равнобедренный треугольник АВС, у которого АВ=ВС. Из угла АВС необходимо провести биссектрису ВД. Теперь следует рассмотреть два полученных треугольника. По условию АВ=ВС, сторона ВД у треугольников общая, а углы АВД и СВД равны, ведь ВД – биссектриса. Вспомнив первый признак равенства, можно смело заключить, что рассматриваемые треугольники равны. А следовательно, равны все соответствующие углы. И, конечно, стороны, но к этому моменту вернемся позже.
1) Найдем, через соотношение отрезков, их длины:
32 --- 5, значит, х --- 2 ⇒ х = 12,8 см
32 --- 5, значит, х --- 3 ⇒ х = 19,2 см
2) Мы видим, что эти отрезки являются средними линиями получившихся треугольников. По свойству средней линии в треугольнике она равна половине основания. В данном случае основания треугольников - это основания трапеции. Найдем их:
12,8*2 = 25,6 см
19,2*2 = 38,4 см
Проверка:
Средняя линия трапеции равна полусумме оснований:
С.лин. = 38,4+25,6/2 = 64/2 = 32 см. Все сходится.
ответ: 38,4 см, 25,6 см.