Если <D=<B=120°, то <A=<C=180-120=60° Рассмотрим прямоуг. треугольник AMB. В нем <ABM=180-(60+90)=30° Значит, сторона AM лежит против угла в 30° и она в 2 раза меньше гипотенузы AB, т.е. АМ=4:2=2 см. Тогда MD=AD-AM=4-2=2 см Аналогично, в прямоуг. треугольнике BNC <CBN=180-(60+90)=30° Следовательно, <MBN=<ABC-(<ABM+<CBN)=120-(30+30)=60°
Рассмотрим треугольник ABD. Он - равнобедренный (AD=AB), значит, <ADB=<ABD. Но <A = 60°, тогда <ADB=<ABD.= (180-<A)/2=(180-60)/2=60°, т.е. треугольник ABD - равносторонний, тогда BD=AB=4 см
Рассмотрим треугольник MBN. Т.к. Δ AMB=ΔCNB (по 1-му признаку, AB=BC, AM=CN, <A=>C), то BM=BN и ΔMBN - равнобедренный. Но <MBN=60°, значит, <BMN=<BNM=(180-60)/2=60°А это означает, что ΔMBN - равносторонний все доказали
Площадь прямоугольного треугольника равна половине произведения его катетов.
Пусть угол С=90°, угол А=30°.
Тогда ВС=12•sin30°=6 см
АС=12•cos30°=6√3 см
S(∆ABC)=AC•BC:2=36√3:2=18√3 см²
Равновеликие части означает равные по площади, т.е. каждая равна половине площади данного треугольника⇒
S/2=9√3 см² площадь кругового сектора окружности с центром в вершине А.
Одна из формул площади сектора круга:
S=πr*α/360°
отсюда находим радиус по известным площади и углу α=30°:
9√3=π•r²/12
r=√(108√3/π)=7,716 см