случае наименьший угол равен ∠ =
180
Объяснение:Рассмотрим треугольник ABC с углами ∠ = ∠ = , ∠ = 180 − 2. Чтобы
получилось два треугольника прямая должна проходить через одну из вершин.
Рассмотрим случай, когда она проходит через вершину A и делит треугольник на два: ADB
и ADC (см. рис.).
Треугольник ADC является равнобедренным в двух случаях:
I) ∠ = . Приравнивая ∠ = ∠ (т.к. угол ∠ тупой) приходим к
уравнению 180 − 2 = 3 − 180
, откуда = 72
. Наименьший угол тогда
равен ∠ = 36
II) ∠ = ∠ =
180−
2
. Тогда 3
2
− 90 = 180 − 2, откуда =
540
7
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)