22-6:3 = 5,3 (боковые стороны)
5,3+6 = 11,3 (основание)
5,3×2 + 11,3 = 22 (см.) - периметр с округлением
(если так то будет 5,333333333 и т.д.)
Объяснение:
Пусть дан равносторонний треугольник АВС, с высотой АН и сторонами а. В него вписана окружность с центром в точке О и радиусом R.Найдем высоту треугольника.
Высота АН равностороннего треугольника,она же медиана и биссектриса. А значит по свойству медианы ВН=НС=ВС/2=а/2, по свойству высоты <AHB=<AHC=90°.
Рассмотрим треугольник АНС, он прямоугольный <H=90°, с гипотенузой а, и катетами НС=а/2, и АН.
Найдем катет АН треугольника по теореме Пифагора:
АН=√(АС²-НС²)=√(а²+а²/4).
Радиус окружности вписанной в треугольник:
R=√((p-AC)(p-CB)(p-AB)/p).
Найдем полу периметр:
p=(1/2)(AC+CB+AB)=(1/2)(а+а+а)=3а/2 см.
Подсчитаем радиус:
R=√((p-AC)(p-CB)(p-AB)/p=√((3а/2-а)(3а/2-а)(3а/2-а)/(3а/2))= а/√12 см.
Выразим из этого выражения а:
а=R√12.
Подставим в выражение для определения высоты:
АН=√(а²+а²/4)=√((R√12)²+(R√12/2)²)=√(9*R²)=√(9*64)=24 см.
ответ: АН = 24 см.
Объяснение:
Докажем что BC параллельно AD
так как углы BAC и DCA равны по условию, то можно доказать что прямые параллельны следуя из DC AD секущая АС накрест лежащие углы. Следуя из того что AB=BC BA=DC можно доказать что фигура параллелограмм (потому что они и равны и параллельны) Следовательно из свойств параллелограмма можно доказать что угол B=D потому что в параллелограмме противоположенные углы (по диагонали) равны. Надеюсь понятно объяснил, но в решении могут присутствовать темы которые вы возможно еще не проходили!
Объяснение:
P= 2а+b
т.к основание на 6 см больше, чем боковая сторона, то она равна а+6 следовательно
(6+а)+2а=22
6+а+2а=22
3а=22-6
3а=16
а= 16/3
а≈5,3
а основание равно b = 5,3+6 = 11.3