М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
пидрила5
пидрила5
18.03.2020 08:04 •  Геометрия

Треугольник dob - равнобедренный. bd - основание, докажите, что bm=dk​

👇
Открыть все ответы
Ответ:
DanaФайн
DanaФайн
18.03.2020

Решение смотрите во вложении

По начиная от АВ=8√3см, в ΔАВС (∠С=90°) ∠А=30°, ВС=0.5 АВ=4√3/см/, тогда по теореме Пифагора

АС=√((8√3)√3)²)=√(64*3-16*3)=√(48*30=12/см/, значит, CD=16-12=4/см/

т.к. в треугольнике  ВСD гипотенуза равна 8см, а против угла В, который равен 30°, лежит катет СD, то он равен половине гипотенузы ВD, т.е. 8/2=4/см/, теперь почему угол В в этом треугольнике равен 30градусов, надеюсь, понятно, потому что от 90°-60°=30°, а то, что ∠АВС =60 °, это тоже ясно, потому что ∠А смежный с внешним, равен 30°. С углами понятно, да? Осталось сказать, что в треугольнике АВD против угла А, равного 30°, лежит катет ВD, который равен 8см, поэтому гипотенуза АD равна 2*8=16/см/, на оставшуюся часть, т.е. АС приходится 16-4=12/см/ответ АС=12см; СD =4 см.

Теперь я свободен?)


решить геометрию , надо с дано и решение
4,6(16 оценок)
Ответ:
nubpolymaster
nubpolymaster
18.03.2020

Доказательство:

Так как треугольник остроугольный и BD - биссектриса, то ∠B<90°⇒∠CBD<45°=∠DFC, следовательно F∈BC.

Проведем из точки D перпендикуляр до отрезка BC с основанием M, M будет принадлежать стороне BC поскольку треугольник остроугольный.

Тогда прямоугольные треугольники BDE и BDM равны по общей гипотенузе BD и острым углам ∠DBE, ∠DBM. Из этого следует что, BE=BM, DE=DM.

Также из-за того что, ∠DBC<∠DFC=45°<∠DMC=90°⇒F∈BM, теперь можно пользоваться тем что BF+FM=BM.

Заметим что, DFM - прямоугольный треугольник с углом 45°, то есть DM=FM.

Учитывая доказанные равенства получаем,

BF+DE=BF+DM=BF+FM=BM

Что требовалось доказать.

4,4(69 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ