Площадь квадрата равна его стороне в квадрате. Из условия мы можем найти стороны этих двух квадратов. Все стороны квадрата равны а так как каждый из этих квадратов построен на одной из стороне прямоугольника, то следовательно сторона квадрата равна стороне прямоугольника. Извлекаем квадратный корень из площадей квадрата и получаем стороны прямоугольника: 7 см и 12 см.
Периметр прямоугольника равен удвоенному произведению суммы его сторон:
2*(7 + 12) = 38 см - периметр вашего прямоугольника.
ответ: перемитр прямоугольника равен 38 см.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.