1) Найдем, через соотношение отрезков, их длины:
32 --- 5, значит, х --- 2 ⇒ х = 12,8 см
32 --- 5, значит, х --- 3 ⇒ х = 19,2 см
2) Мы видим, что эти отрезки являются средними линиями получившихся треугольников. По свойству средней линии в треугольнике она равна половине основания. В данном случае основания треугольников - это основания трапеции. Найдем их:
12,8*2 = 25,6 см
19,2*2 = 38,4 см
Проверка:
Средняя линия трапеции равна полусумме оснований:
С.лин. = 38,4+25,6/2 = 64/2 = 32 см. Все сходится.
ответ: 38,4 см, 25,6 см.
Конструкция имеет форму прямой треугольной призмы, стороны основания которой 9 м, 10 м и 17 м. Найдите высот ( в метрах) в этой конструкции, если площадь ее полной поверхности равна 360 м^2
Объяснение:
Призма прямая, значит боковое ребро является высотой призмы .
S(полное)= 2S(осн)+ S(бок)
S(осн) =S(треуг)= √p (p−a) (p−b) (p−c) , ф. Герона ,
S(бок)=Р*h, h- высота ( в метрах) в этой конструкции.
Р=9+10+17=36 , полупериметр Р/2=р=18 .
р-9=9, р-10=8, р-17=1. Тогда S(треуг)= √(18* 9* 8 *1)=9*4=36, 2S(осн)=72.
360=72+36*h , 360-72=36*h ,h= 8 м
S=(a+b)/2*h=(4+9)/2*3=19.5
Объяснение: