Обозначим параллелограмм буквами ABCD. Пусть диагональ BD образует углы:
угол DBA=30 градусов, угол DB=90 градусов
Обозначим сторону AB=a, сторону BC=b. Так как у параллелограмма противолежащие стороны равны, то AB=CD=a, BC=AD=b
По условию задачи периметр параллелограмма равен:
P=AB+BC+CD+AD=a+b+a+b=2(a+b)=36
a+b=18
Рассмотрим треугольник ABD. Он прямоугольный, угол BDA=90 градусов
Выразим сторону AD:
AD=AB*sinABD=a*sin30=a/2
Значит, b=a/2
Подставим b вместо a:
a+b=36
a+a/2=18
3a/2=18
a=12
b=6
ответ: стороны параллелограмма равны 6см и 12см.
Дан треугольник, две стороны которого равны по 10 см, третья - 12 см. Этот треугольник равнобедренный. Обозначим его АВС, АВ=ВС. Проведем высоту ВН к основанию. Высота равнобедренного треугольника, проведенная к основанию, является его медианой. ⇒ АН=СН=6 см. По т.Пифагора ВН=√(АВ²-АН²)=√(100-36)=8 см. Высоты к боковым сторонам равнобедренного треугольника равны. Найдем их из площади ∆ АВС.
Ѕ(АВС)=АС•ВН:2=48 см² В то же время Ѕ(АВС)=СМ•АВ:2, поэтому СМ•10:2=48 см², откуда СМ=АК=96:10=9,6 см.