1. Расстояние от центра окружности до точки, из которой проведены две касательные, делит угол A пополам. Значит угол HAO равен 30 градусам. Проведем радиус от точки O в точку касания окружности с касательной. Радиус, проведенный из центра окружности к точке касания является перпендикуляром к касательной. Получается прямоугольный треугольник HAO. В прямоугольном треугольнике катет, лежащий против угла в 30 градусов половине гипотенузы. OA - гипотенуза
OH=1/2*6
OH=3
OH-радиус окружности
ответ:R=3
2.28 градусов
3.7
Если знаем формулу - воспользуемся, если нет- сейчас выведем. Есть и другие решения..
Итак , смотри рисунок.
из закрашенный прямоугольных треугольников -
1) x²+h²=a²
2) (c-x)²+h²=b² => c²-2cx+x²+h²=b² подставляем из (1)
c²-2cx+a²=b²
x=(c²+a²-b²)/2c
из желтого треугольника cosα=x/a
cosα=(a²+c²-b²)/(2ac)
в общем виде - косинус угла равен сумме квадратов прилежащих минус квадрат противоположной стороны и все это деленное на удвоенное произведение прилежащих.
теперь просто подставляем
cosα=(7²+10²-9²)/(2*7*10)=17/35
cosβ=(9²+10²-7²)/(2*9*10)=11/15
cosΔ=(7²+9²-10²)/(2*7*9)=5/21
отсюда пишем углы через арккосинус