1). Призма называется прямой, если боковые грани призмы перпендикулярны основаниям. В основании прямой (и обычной) призмы могут лежать любые равные многоугольники, лежащие в параллельных плоскостях, в том числе и трапеция.
2). Так как прямоугольный параллелепипед является частным случаем прямой четырехугольной призмы, то, в качестве примера, можно назвать любые объекты такой формы: микроволновая печь, шкаф, жилой многоквартирный дом, колонка, тумбочка и т.п.
Из "экзотических" примеров можно назвать, например, рельс, имеющий в основании многоугольник в форме буквы н
Значит С((2-2)/2;(2+2)/2) или С(0;2). ответ г).
3. Координаты вектора - разность координат конца и начала этого вектора.
АВ{-2-2;7-7} или AB{-4;0}.
4. Длина вектора а{6;-8} равна его модулю: |a|=√(6²+(-8)²)=10.
5. Чтобы проверить, лежит ли точка на окружности, надо подставить координаты точки в уравнение окружности:
(-5+5)²+(-3-1)²=16 или 0+16=16. ответ: а) да, лежит.
6. Длина радиуса этой окружности - модуль вектора М0.
|M0|=√(0-(-3))²+(0-4)²)=√(9+16)=5. ответ в)