Решение
sin (pi/2+t)-cos(pi-t)+tg(pi-t)+ctg(5pi/2-t) = cost + cost - tgt + tgt =2cost
Объяснение:
sin (π/2 + t) - cos (π - t) + tg (π - t) + ctg (5π/2 - t). Для упрощения данного выражения используем формулы приведения. По формулам приведения: sin (π/2 + t) = cos t; cos (π - t) = – cos t; tg (π - t) = – tg t; ctg (5π/2 - t) = tg t. Таким образом, мы пришли к выражению: cos t - (– cos t) + (– tg t) + tg t = (раскроем скобки, если перед скобками стоит знак минус "-", то знак слагаемого в скобках необходимо поменять на противоположный) = cos t + cos t - tg t + tg t = (- tg t и tg t взаимно уничтожаются) = 2cos t. ответ: sin (π/2 + t) - cos (π - t) + tg (π - t) + ctg (5π/2 - t) = 2cos t.
ответ:
формула площі трикутника за стороною та висотою
площа трикутника дорівнює половині добутку довжини сторони трикутника та довжини проведеної до цієї сторони висоти
s = 1 a · h
2
формула площі трикутника за трьома сторонами
формула герона
s = √p(p - a)(p - b)(p - c)
формула площі трикутника за двома сторонами і кутом між ними
площа трикутника дорівнює половині добутку двох його сторін помноженого на синус кута між ними.
s = 1 a · b · sin γ
2
формула площі трикутника за трьома сторонам і радіусом описаного кола
s = a · b · с
4r
формула площі трикутника за трьома сторонами і радіусом вписаного кола
площа трикутника дорівнює добутку півпериметра трикутника на радіус вписаного кола.
s = p · r
де s - площа трикутника,
a, b, c - довжини сторін трикутника,
h - висота трикутника,
γ - кут між сторонами a и b,
r - радіус вписаного кола,
r - радіус описаного кола,
p = a + b + c - півпериметр трикутника.
2
объяснение: