Объяснение: Биссектриса внутреннего угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам. Обозначим точку пересечения биссектрисы АD и высоты СН буквой К. Тогда СК:КН=АС:АН.
В прямоугольном треугольнике катет есть среднее геометрическое (среднее пропорциональное) между гипотенузой и проекцией этого катета на гипотенузу.
АС - катет, АН его проекция на гипотенузу. Примем АН=х ⇒ АС²=АВ•АН ⇒ 7,5²=12,5•х, откуда х=4,5
Трапеция АВСД, у которой АД-нижнее основание, ВС- верхнее основание. Если трапецию можно вписать в окружность, то трапеция – равнобедренная (АВ=СД). В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон (АД+ВС=АВ+СД). Высота трапеции ВН равна диаметру вписанной окружности (ВН=2*6=12) Средняя линия трапеции МК параллельна основаниям и равна их полусумме (МК=(АД+ВС)/2 или АД+ВС=2МК=2*13=26). Тогда боковые стороны равны АВ+СД=26, значит АВ=СД=26/2=13. Из прямоугольного ΔАВН найдем АН=√(АВ²-ВН²)=√(13²-12²)=√25=5. В равнобедренной трапеции АД=ВС+2АН=ВС+10. Подставим это в АД+ВС=26, получаем ВС+10+ВС=26 ВС=16/2=8 АД=8+10=18 ответ: стороны 13, 8, 13, 18.
ответ: 5:3
Объяснение: Биссектриса внутреннего угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам. Обозначим точку пересечения биссектрисы АD и высоты СН буквой К. Тогда СК:КН=АС:АН.
В прямоугольном треугольнике катет есть среднее геометрическое (среднее пропорциональное) между гипотенузой и проекцией этого катета на гипотенузу.
АС - катет, АН его проекция на гипотенузу. Примем АН=х ⇒ АС²=АВ•АН ⇒ 7,5²=12,5•х, откуда х=4,5
Искомое отношение СК:КН=7,5:4,5=5:3