PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.
Сторону основания этой пирамиды найдем из ее объема. Объем пирамиды находят по формуле V=Sh:3 Площадь основания данной пирамиды - площадь правильного шестиугольника- состоит из суммы площадей шести правильных треугольников. Пусть сторона каждого из них равна а. Площадь правильного шестиугольника S = pr = 3a²√3/2, где p − полупериметр шестиугольникa, a r- радиус вписанной в него окружности, или, иначе - апофема правильного шестиугольника (т.е. высота одного из правильных треугольников, составляющих этот шестиугольник). Так как боковая грань и основание пирамиды образуют угол 45°, высота пирамиды равна апофеме шестиугольника в основании пирамиды. Напомню, что апофемой правильного шестиугольника называют перпендикуляр, проведенный из центра к любой стороне. (В задачах редко встречается, но такое название есть). Высота пирамиды и апофема основаниия здесь - катеты равнобедренного прямоугольного треугольника m = h= a√3/2 Следовательно, V={3a²√3):2}·{a√3):2}:3=9a³:12=3a³:4 162=3a³:4 а³=162·4:3=216 а= ∛216=6
36:3=12.
Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°.
Вычислим диаметр окружности:
d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3.
Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а.
По теореме Пифагора: a²+a²=d², 2a²=(8√3)².
2a²=64·3,
a²=32·3=16·2·3,
a=√16·6=4√6.
a=4√6.