a) 100°; 40°; 40°.
б) 90°; 45°; 45°.
в) 50°; 65°; 65°.
Объяснение:
По теореме о сумме углов треугольника (сумма внутренних углов треугольника равна 180°).
В равнобедренном треугольнике углы при основании равны.
a) Значит, два угла при основании равны по 40°. Сумма углов при основании равна
40° + 40° = 80°
Зная это, найдем третий угол (при вершине):
180° - 80° = 100 (градусов) - угол при вершине.
б) Значит, на углы при основании остаётся:
180° - 90° = 90°
Так как они равны в равнобедренном треугольнике:
90° : 2 = 45 (градусов) - величина каждого угла при основании.
в) Значит, на углы при основании остаётся:
180° - 50° = 130°
Так как они равны в равнобедренном треугольнике:
130° : 2 = 65 (градусов) - величина каждого угла при основании.
По свойству отрезков касательных, проведенных из одной точки к одной окружности МК=МN₁; NN₁=NE₁=12; EE₁=EK; где N₁ и E₁ - точки касания окружности с гипотенузой МN и катетом NЕ соответственно.
EK=ЕE₁ =ОК =х - радиус, подлежащий определению. Из данного в условии прямоугольного треугольника свяжем теоремой Пифагора гипотенузу и катеты. (МN=8+12=20; МЕ=8+х; NE=12+х)
МN²=МЕ²+NE²; 20²=(8+х)²+(12+х)²; 400=64+16х+х²+144+24х+х²;
2х²+40х-192=0, сократим на два обе части уравнения. х²+20х-96=0, ПО теореме, обратной теореме Виета х=-24- не подходит по смыслу задачи, не может радиус быть отрицательным. х=4
ответ Радиус равен 4см
40°
Объяснение:
Дано: ΔАВС, АВ=ВС, ∠ВСЕ=110°. Знайти ∠В.
∠ВСА=180-110=70°
∠ВАС=∠ВСА=70°
∠В=180-(70+70)=40°