Объяснение: Рисуем треугольник АВС. Угол А - прямой.
Проводим высоту АК на сторону СВ.
ВК = 6 см
КС = 2 см
Составляем уравнения теоремы Пифагора
АК^2 = AC^2 - KC^2
или
АК^2 = AC^2 - 4 [уравнение 1]
AK^2 = AB^2 - BK^2
или
AK^2 = AB^2 - 36 [уравнение 2]
AB^2 + AC^2 = BC^2
или
AB^2 + AC^2 = 64 [уравнение 3]
Складываем уравнени [1] и [2]
2 * АК^2 = AC^2 + AB^2 - 40
Вместо суммы квадратов катетов подставляем значение квадрвта гипотенузы из уравнения 3
2 * АК^2 = 64 - 40
АК^2 = 12
Находим катет АС
АС^2 = AK^2 + KC^2 =
AC^2=12 + 4 = 16
AC = 4 см
sin В = АС/СВ = 4/8 = 1/2
В = 30 гр
С = 60 град
Подробнее - на -
8цел16/37 см самая маленькая высота
Объяснение:
Дано
Треугольник
а=26см сторона треугольника
б=15 см сторона треугольника
с=37 см сторона треугольника
h(37)=?
Решение
Найдем площадь по формуле Герона.
S=√(р(р-а)(р-б)(р-с)), где р- полупериметр
р=(а+б+с)/2
р=(26+15+37)/2=78/2=39 см полупериметр.
S=√(39(39-26)(39-15)(39-37)=√(39*13*24*2)=
=√24336=156 см² площадь треугольника.
Другая формула нахождения площади.
S=1/2*c*h., где с - основание на которую опущена высота. h- высота.
h=2S/c
h(37)=2*156/37=312/37=8цел16/37 см высота