Отрезок, соединяющий основание перпендикуляра и наклонной, проведённых из одной и той же точки, является проекцией этой наклонной. (см. рисунок в приложении).
В треугольнике боковая сторона - наклонная, его высота - перпендикуляр к прямой, содержащей другую сторону.
Высота равностороннего треугольника еще и медиана и биссектриса. Все углы равностороннего треугольника =60°. Поэтому проекция стороны - катет прямоугольного треугольника, который противолежит углу 30°. По свойству такого катета он равен половине гипотенузы. ⇒
Проекция стороны данного треугольника на прямую, содержащую другую сторону – 1:2=0,5
△BAL, △CAL - равнобедренные треугольники
Рассмотрим случаи:
1) ∠B=∠BAL
1.1) ∠С≠∠CAL, т.к. в противном случае BL=AL=CL, медиана равна половине стороны, следовательно проведена из прямого угла, но ∠BAC=48°.
1.2) ∠CAL=∠ALС
∠ALС=2∠B (внешний угол равен сумме двух внутренних, не смежных с ним)
∠CAL=2∠B
∠BAL+∠CAL=48° <=> 3∠B=48° <=> ∠B=16°, ∠С=180°-∠B-∠BAC=116°
1.3) ∠С=∠ALС
∠ALС=2∠B (внешний угол равен сумме двух внутренних, не смежных с ним)
∠С=2∠B
∠С+∠B=180°-48°=132° <=> 3∠B=132° <=> ∠B=44°, ∠С=88°
2) ∠BAL=∠ALB
2.1) ∠С=∠CAL. Аналогично 1.2
2.2) ∠CAL≠∠ALC. Углы при основаниях равнобедренных треугольников острые, следовательно не могут составлять развенутый угол.
2.3) ∠C≠∠ALC, см. 2.2
3) ∠B=∠ALB
3.1) ∠С=∠CAL. Аналогично 1.3
3.2) ∠CAL≠∠ALC, см. 2.2
3.3) ∠C≠∠ALC, см. 2.2