в конус вписана пирамида КАВСД, К-вершина (совпадает с вершиной конуса), АВСД-квадрат, О-центр квадрат., центр описанной окружности, КО-высота конуса-высота пирамиды-15, ОС=ОА=ОД=OB=8-радиус конуса,
АС=2*ОА=2*8=16,
треугольник АКО прямоугольный,
АК-боковое ребро пирамиды-корень (КО в квадрате+ОА в квадрате)=корень(225+64)=17
треугольник АСД прямоугольный,
АД=ДС=корень(AC в квадрате/
2)=корень(256/2)=8*корень2= сторона
Основания
площадь
АВСД=АД*ДС=8*корень2*8*корень2=128
проводим перпендикуляр ОН на АД,
OH=1/2ДС=8*корень2/2=4*корень2,
проводим апофему КН на АД, треугольник КОН прямоугольный, KH=корень(КО в квадрате+ОН в квадрате)=корень(225+32)=корень257 - апофема
боковая поверхность
пирамиды=1/2*периметрАВСД*KH=1/2*4*8*к корень 2 корень 257-16 корень 514
Дуга АС = 52°
Известно, что AB-диаметр окружности и угол CAB=64°.
Так как AB диаметр окружности и вписанный угол ACB опирается на диаметр AB, то ∠ACB=90°. Сумма внутренних углов треугольника 180°, то есть
∠ACB + ∠CAB + ∠CBA = 180°.
Отсюда находим
∠CBA = 180° - ∠ACB - ∠CAB = 180° - 90° - 64° = 26°.
Вписанный угол равен половине дуги, на которую он опирается. Тогда величина дуги АС, на которую опирается вписанный угол CBA, два раз больше чем величина вписанного угла ∠CBA. Поэтому
дуга АС = 2·26° = 52°.