Дана трапеция abcd (ab=bc=cd=3). o – точка пересечения диагоналей ac и bd. окружность, описанная вокруг треугольника abo, пересекает основание ad повторно в точке e. найдите максимум oe•ac.
∠1 = ∠2 как накрест лежащие при пересечении AD║ВС секущей АС,
∠2 = ∠3 как углы при основании равнобедренного треугольника АВС (АВ = ВС по условию), ⇒
∠1 = ∠3.
Эти углы вписанные. Раз они равны, то равны и дуги, на которые они опираются, ∪ВО = ∪ОЕ. А равные дуги стягиваются равными хордами, значит ВО = ОЕ.
___________
∠BDA = ∠CBD как накрест лежащие при пересечении AD║ВС секущей BD,
∠CBD = ∠CDB как углы при основании равнобедренного треугольника BCD, ⇒
∠BDA = ∠CDB.
Трапеция равнобедренная, значит ∠BAD = ∠CDA, а значит равны между собой и все углы, помеченные одной черной дужкой. Тогда
ОЕ = ОВ = ОС.
_______
∠ВОА = 2 · ∠2 как внешний угол ΔВОС,
∠ВАD = 2 · ∠1,
а так как ∠1 = ∠2, то и ∠ВОА = ∠BAЕ.
Эти углы вписанные, значит равны соответствующие дуги (∪ВА = ∪ВЕ) и стягивающие их хорды ВА = ВЕ, ⇒ ΔАВЕ равнобедренный.
________
ВН - высота трапеции и высота ΔАВЕ, вписанного в ту же окружность. Так как треугольник равнобедренный, центр окружности лежит на высоте ВН, а так как ВН⊥ВС, то ВС - касательная к окружности.
По свойству отрезков касательной и секущей, проведенных из одной точки:
Наиболее очевидный частный случай, если трапеция равнобедренная. решения для этого случая выше. рассмотрим вариант с прямоугольной трапецией. пусть высота (она же одна из сторон) равна х, вторая сторона у. тогда периметр х+у+9+15=34 => х+у=10 теперь рассмотрим треугольник, который образует сторона, не образующая прямой угол с основанием, высота опущенная из точки пересечения этой стороны с малым основанием на большое основание и отрезок между этой высотой и и точкой пересечения этой стороны с большим основанием (треугольник cdh, см рисунок). hd=ad-ah, т. к. ан=вс=9, а ad=15, то hd=15-9=6 по теореме пифагора: cd^2=ch^2+hd^2 или cd^2-ch^2=hd^2 т. е. у^2-x^2=36 решаем систему уравнений: { х+у=10 {у^2-x^2=36 например, таким способом: домножаем первое уравнение на (х-у) и складываем его со вторым. получаем уравнение: 10(х-у) -36=0, откуда х-у=3,6. складывая его с первым уравнением, получаем 2х=13,6 т. о. х=6,8 s=((a+b)/2)*h а=9; b=15; h=x=6,8 s=((9+15)/2)*6.8=81.6
9
Объяснение:
∠1 = ∠2 как накрест лежащие при пересечении AD║ВС секущей АС,
∠2 = ∠3 как углы при основании равнобедренного треугольника АВС (АВ = ВС по условию), ⇒
∠1 = ∠3.
Эти углы вписанные. Раз они равны, то равны и дуги, на которые они опираются, ∪ВО = ∪ОЕ. А равные дуги стягиваются равными хордами, значит ВО = ОЕ.
___________
∠BDA = ∠CBD как накрест лежащие при пересечении AD║ВС секущей BD,
∠CBD = ∠CDB как углы при основании равнобедренного треугольника BCD, ⇒
∠BDA = ∠CDB.
Трапеция равнобедренная, значит ∠BAD = ∠CDA, а значит равны между собой и все углы, помеченные одной черной дужкой. Тогда
ОЕ = ОВ = ОС.
_______
∠ВОА = 2 · ∠2 как внешний угол ΔВОС,
∠ВАD = 2 · ∠1,
а так как ∠1 = ∠2, то и ∠ВОА = ∠BAЕ.
Эти углы вписанные, значит равны соответствующие дуги (∪ВА = ∪ВЕ) и стягивающие их хорды ВА = ВЕ, ⇒ ΔАВЕ равнобедренный.
________
ВН - высота трапеции и высота ΔАВЕ, вписанного в ту же окружность. Так как треугольник равнобедренный, центр окружности лежит на высоте ВН, а так как ВН⊥ВС, то ВС - касательная к окружности.
По свойству отрезков касательной и секущей, проведенных из одной точки:
BC² = CO · CA = 9
CO = OE, значит
ОЕ · АС = 9 - значение постоянное