1. Найдём угол при основании: (180-76):2=52 градуса. 2. Центр вписанной в треугольник окружности является точкой пересечения его биссектрис. Т.е АО - биссектриса угла ВАЕ. 3. OE и OD перпендикулярны к сторонам треугольника как радиусы, проведённые к касательным => треугольники ODA и OEA прямоугольные. 4. треугольники ODA и OEA равны по гипотенузе и острому углу (АО - общая, углы ОАЕ и ОАD равны т.к АО биссектриса) 5. Рассмотрим прямоугольный треугольник АОЕ. Угол АОЕ = 90-26=64 градуса. Угол АОЕ=углу AOD =64 градуса (по п.4) 5. Угол DOE=уголAOD+уголAOE=64+64=128 градусов
Ну, то есть, взяли две параллельные прямые:
Параллельные прямые
Пересекли ещё двумя:
параллельные прямые 2.
И вот внутри – параллелограмм!
Какие же есть свойства у параллелограмма?
Свойства параллелограмма.
То есть, чем можно пользоваться, если в задаче дан параллелограмм?
На этот вопрос отвечает следующая теорема:
В любом параллелограмме:
Противоположные стороны равны
Противоположные углы равны
Диагонали делятся пополам точкой пересечения