1. Знайдіть площу круга, якщо довжина кола 12π см.
2. На рисунку О – центр кола, ∠АВС = 21°. Знайдіть ∠AOC .
3. У трикутнику, периметр якого 118см, одна з сторін ділиться точкою дотику, вписаного в нього кола, на відрізки 21см і 15см. Найти две другие стороны.
----------------------------------
1.
С =2πR = 12π см -------------
S - ? S = πR² = (2πR)² /4π = C²/4π =(12π )² /4π = 36π (cм²)
2. Центральный угол ∠AOC = ◡ AC
вписанный угол ∠AOC = ◡ AC /2
∠AOC = 2*∠AOC =2*21° = 42°
3. Отрезки касательных, проведенных из одной точки, равны
Вписываем в исходный треугольник окружность с центром О, проводим касательные перпендикулярно биссектрисам двух острых углов исходного треугольника (на рисунке ST и UV). Эти касательные отрезают два остроугольных треугольника AST и UVC (т.к равнобедренные треугольники с острым углом противолежащим основанию являются остроугольными). В центральном 5-угольнике все его внутренние углы тупые (кроме, может быть угла B). Соединяем вершины этого 5-угольника с центром О. Полученные пять треугольников остроугольные, потому что проведенные отрезки - биссектрисы углов 5-угольника, а биссектрисы делят любой угол на два острых, причем, если угол был тупой, то его половина больше 45 градусов, т.е. это означает что углы при вершине О, острые.
P.S. Можно доказать, что меньше, чем на 7 остроугольных треугольников разрезать нельзя.
1. Знайдіть площу круга, якщо довжина кола 12π см.
2. На рисунку О – центр кола, ∠АВС = 21°. Знайдіть ∠AOC .
3. У трикутнику, периметр якого 118см, одна з сторін ділиться точкою дотику, вписаного в нього кола, на відрізки 21см і 15см. Найти две другие стороны.
----------------------------------
1.
С =2πR = 12π см -------------
S - ? S = πR² = (2πR)² /4π = C²/4π =(12π )² /4π = 36π (cм²)
2. Центральный угол ∠AOC = ◡ AC
вписанный угол ∠AOC = ◡ AC /2
∠AOC = 2*∠AOC =2*21° = 42°
3. Отрезки касательных, проведенных из одной точки, равны