М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
likamikanumberone
likamikanumberone
21.11.2021 16:13 •  Геометрия

Найдите координаты вектора b, коллинеарных вектора a (-4 3 -7) если a * b = -148

👇
Открыть все ответы
Ответ:
on82
on82
21.11.2021

Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника. 

Пусть дан треугольник АВС, угол С=90º

Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М. 

Пусть АК=х, ВН=у. 

Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у

АВ=х+у

АС=х+3, ВС=у+3

Формула радиуса вписанной окружности

r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр

р=х+у+3

3=84:(х+у+3)

х+у+3=28⇒

х+у=25

у=25-х

АВ=х+у=25 дм

АС=х+3

ВС=25-х+3=28-х

По т.Пифагора

(х+3)²+(28-х)²=625

Произведя вычисления и приведя подобные члены, получим квадратное уравнение

х²-25х+84=0

D=25²-4·84=289

Решив уравнение, найдем два корня: 21 и 4

АС=21+3=24 дм

ВС=28-21=7 дм

Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25


Площадь прямоугольного треугольника равна 84 дм^2, а радиус окружности, вписанной в этот треугольник
4,8(11 оценок)
Ответ:
lera933737
lera933737
21.11.2021
Любая вписанная трапеция равнобокая, так как углы, опирающиеся на одну дугу, должны быть равны. Обозначим основания трапеции за 2x и 2y. Тогда средняя линия равна (2x + 2y)/2 = (x + y),

Уравнения:
\begin{cases}
\dfrac{\sqrt{100-x^2}}{\sqrt{100-y^2}}=\dfrac43\\
x+y=\sqrt{100-x^2}+\sqrt{100-y^2}
\end{cases}

Решаем первое уравнение.
\dfrac{\sqrt{100-x^2}}{\sqrt{100-y^2}}=\dfrac43\\
\dfrac{100-x^2}{100-y^2}=\dfrac{16}9\\
100-x^2=\dfrac{1600}9-\dfrac{16}9y^2\\
x^2=\dfrac{16}9y^2-\dfrac{700}9

Подставляя во второе уравнение и немного мучаясь, можно получить ответ x = 6, y = 8.

Уравнения будут выглядеть немного лучше, если обозначить куски высоты как 4x и 3x. Тогда уравнение будет выглядеть следующим образом:
2(\sqrt{100-16x^2}+\sqrt{100-9x^2})=7x\\
4(200-25x^2+2\sqrt{(100-16x^2)(100-9x^2)})=49x^2\\
x^2=t:\quad 149t-800=2\sqrt{100^2-25t+144t^2}\\
\dots
Получающееся квадратное уравнение радует количеством вычислений.

Наконец, можно обозначить неизвестными углы 
H1CO = x и H2DO = y
Тогда система получится простой:
\begin{cases}
4\sin x=3\sin y\\
\cos x+\cos y=\sin x+\sin y
\end{cases}
Но решать её всё равно неинтересно.

ответ. 12, 16.

Центр окружности, описанной около трапеции, делит ее высоту в отношении 3: 4. найти основания трапец
4,7(95 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ