1) Пусть будет треугольник АВС, АВ=7, АС=13, угол В = 60 градусов. По теореме синусов
Угол С=27 градусов 47 минут. По теореме о сумме углов треугольника находим, что угол А равен 92 градуса 13 минут.
Синусы можно найти в таблице Брадиса. ответ: ВС=15.
2) Диагонали прямоугольника равны, они делятся точкой пересечения пополам. Угол в 60 градусов - острый, поэтому он смотрит в сторону меньшей стороны. Значит, у нас есть равнобедренный треугольник с основанием 5 и углом в 60 градусов, то есть он равносторонний и его сторона равна 5. Тогда диагональ прямоугольника равна 5*2=10. Всё просто) ответ: 10.
ΔАСВ - равнобедренный, АС = ВС (по условию); ∠С = 90°; СН - высота.
Найти СН
Решение:
Если прямоугольный треугольник является равнобедренным, то оба его катета равны (АС = ВС) А высота СН, проведённая из прямого угла, является и медианой и биссектрисой,
⇒ СН разделит АВ пополам, т. е. АН = НВ = 5см - (свойство медианы)
⇒ ∠АСН = ∠НСВ = 45° - (свойство биссектрисы)
Рассмотрим Δ АНС: ∠АНС = 90° (т.к. НС - высота);
∠АСН = 45°
∠НАС = 180 - 90 - 45 = 45° (сумма ∠∠∠ Δ=180°)
⇒ Δ АНС - равнобедренный (∠АСН = ∠НАС = 45°)
⇒ НС = НА = 5 см
ответ: НС = 5см