Даны две точки, лежащие в одной полуплоскости относительно данной прямой. Постройте треугольник, одна из сторон которого лежит на данной прямой, а центр описанной окружности и ортоцентр являются двумя данными точками.
0) Обозначим одну точку как H, это будет ортоцентр. А другую, как O, это будет центр описанной окружности.
Вспомним два свойства ортоцентра:
1. Точка, симметричная ортоцентру относительно прямой, содержащей сторону треугольника, лежит на описанной около треугольника окружности.
2. Точка, симметричная ортоцентру относительно середины стороны треугольника, лежит на описанной около треугольника окружности и диаметрально противоположна вершине треугольника, противолежащей данной стороне.
1) Построим точку H' симметричную H относительно прямой а. Для этого: проводим полуокружность с центром H и радиусом (p) большим, чем расстояние от H до прямой а. Из точек пересечения полуокружности с прямой, проводим окружности с радиусом (p). Они пересеклись в двух точках, одна H, другая H'.
По свойству ортоцентра (1.) H' лежит на описанной окружности.
2) Проведём окружность с центром в точке O и радиусом OH'. Это и есть описанная окружность. По условию, точки пересечения этой окружности с прямой a, будут вершинами треугольника. Обозначим эти вершины как A и B. Построим сторону AB.
3) Определим середину AB. Для этого: проводим окружности с центрами в точках A и B, с равными радиусами (r), которые больше, чем половина AB. Через точки пересечения этих двух окружностей проводим прямую q. Точку пересечения прямых q и а обозначим как M. Это и есть середина AB.
4) Построим последнюю вершину треугольника C. Проводим прямую k через точки M и H. Точку пересечения k с описанной окружностью обозначим, как H₁. По свойству ортоцентра (2.) точка H₁ диаметрально противоположная точке С. Проводим через точки H₁ и O прямую t, точку пересечения прямой t и окружности обозначим как С. Это и есть последняя вершина.
5) Построим стороны AC и BC треугольника ABC. Задание выполнено.
Угол равный 60градусов будет лежать против стороны равной 5 см, т. к. этот угол меньше 90 градусов. значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол) пусть прямоугольник будет АВСД, точка пересечения диагоналей О, тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см. По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см. У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный. По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5 площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
0) Обозначим одну точку как H, это будет ортоцентр. А другую, как O, это будет центр описанной окружности.
Вспомним два свойства ортоцентра:
1. Точка, симметричная ортоцентру относительно прямой, содержащей сторону треугольника, лежит на описанной около треугольника окружности.
2. Точка, симметричная ортоцентру относительно середины стороны треугольника, лежит на описанной около треугольника окружности и диаметрально противоположна вершине треугольника, противолежащей данной стороне.
1) Построим точку H' симметричную H относительно прямой а. Для этого: проводим полуокружность с центром H и радиусом (p) большим, чем расстояние от H до прямой а. Из точек пересечения полуокружности с прямой, проводим окружности с радиусом (p). Они пересеклись в двух точках, одна H, другая H'.
По свойству ортоцентра (1.) H' лежит на описанной окружности.
2) Проведём окружность с центром в точке O и радиусом OH'. Это и есть описанная окружность. По условию, точки пересечения этой окружности с прямой a, будут вершинами треугольника. Обозначим эти вершины как A и B. Построим сторону AB.
3) Определим середину AB. Для этого: проводим окружности с центрами в точках A и B, с равными радиусами (r), которые больше, чем половина AB. Через точки пересечения этих двух окружностей проводим прямую q. Точку пересечения прямых q и а обозначим как M. Это и есть середина AB.
4) Построим последнюю вершину треугольника C. Проводим прямую k через точки M и H. Точку пересечения k с описанной окружностью обозначим, как H₁. По свойству ортоцентра (2.) точка H₁ диаметрально противоположная точке С. Проводим через точки H₁ и O прямую t, точку пересечения прямой t и окружности обозначим как С. Это и есть последняя вершина.
5) Построим стороны AC и BC треугольника ABC. Задание выполнено.