Треугольник АВС и треугольник А1В1С1 равны по стороне и двум прилежащим к ней углам. Отрываем треугольник АВС. Точку А совмещаем с точкой А1. Луч АС совмещаем с лучом А1С1. Но отрезок АС равен отрезку А1С1. А на данной полупрямой от её начала можно отложить только один отрезок данной линейной меры, значит, точка С совпадет с точкой С1. Но угол А равен углу А1, а от данной полупрямой в данной полуплоскости можно отложить только один угол данной градусной меры, значит луч АВ пойдёт по лучу А1В1. Но угол С равен углу С1, а от данной полупрямой в данной полуплоскости можно отложить только один угол данной градусной меры, значит луч ВС пойдёт по лучу В1С1. А две прямые пересекаются только в одной точке. Лучи АВ и ВС и лучи А1В1 и В1С1 пресекутся в одной точке. Треугольники совпали всеми своими точками. Значит они равны. Теорема доказана
Диагонали прямоугольника равны и угол между ними всегда острый, значит есть два варианта решения: А) Угол 47 образовывается в равнобедренном треугольнике, допустим, AOB, где O - точка пересечения диагоналей. угол OAB = угол OBA, т.к. диагонали равны и точка пересечения делит их пополам, значит AOB = 180-47*2 = 86 B) Существует так же угол, образовываемый пересечением двух диагоналей, он смежен углу 86. 180-86 = 94. Так же его можно найти с но взять угол 43, образовываемый так же диагональю (90-47), решение аналогичное (180-43*2)
Объяснение:
высота опущенная на гипотенузу, является средним пропорциональным между проекциями катетов на гипотенузу
h²=АК*КВ
ΔАВС - прямоугольный, СА, СВ - катеты, СК - высота опущенная на гипотенузу.
по теореме Пифагора найдем гипотенузу АВ
АВ²=15²+36²=1521
АВ =√1521 = 39
каждый катет является средним пропорциональным между гипотенузой и проекцией этого катета
АК/АС=АС/АВ
АК=АС²/АВ
АК=15²/39=225/39
КВ= 39- 225/39=1296/39
h²=225/39*1296/39
h=36*15/39
h=13,85