1. Две параллельные прямые а и b задают плоскость, которая пересекает плоскости α и β по прямым А₁В₁ и А₂В₂.
Если параллельные плоскости пересекаются третьей плоскостью, то линии пересечения параллельны, значит
А₁В₁ ║ А₂В₂.
Итак, А₁В₁ ║ А₂В₂, А₁А₂ ║ В₁В₂, значит А₁А₂В₂В₁ - параллелограмм.
В параллелограмме противолежащие углы равны, значит
∠А₂А₁В₁ = ∠В₁В₂А₂ = 60°
5. Вероятно, в условии опечатка, точа М и точка О - это одна и та же точка.
Две пересекающиеся прямые а и b задают плоскость, которая пересекает плоскости α и β по прямым А₁В₁ и А₂В₂.
Если параллельные плоскости пересекаются третьей плоскостью, то линии пересечения параллельны, значит
А₁В₁ ║ А₂В₂.
ΔА₁МВ₁ подобен ΔА₂МВ₂ по двум углам (∠МА₁В₁ = МА₂В₂ как накрест лежащие при пересечении параллельных прямых А₁В₁ и А₂В₂ секущей А₁А₂, а углы при вершине М равны как вертикальные), значит
А₂В₂ : А₁В₁ = МВ₂ : МВ₁ = 5 : 3
А₂В₂ = А₁В₁ · 5 / 3 = 15 · 5 / 3 = 25 см
1. углы: 60°, 120°, 60°, 120°
2. Р = 28см
1) поскольку АС - бисектриса, то угол САВ = углу САD и равен 30°
2) аналогично с углами напротив (противоположные углы в паралеллограме равны)
3) простыми расчётами находим большой угол В (и угол D соответственно): 180° - 60° = 120°(надеюсь тут все понятно)
4) с треугольника АВС: углы при основе равны(А=С) соответственно треугольник равнобедренный и сторона АВ = ВС = 7 см
5) две оставшиеся стороны можно найти или через "ознаку" (не знаю как по-русски), противоположные стороны паралеллограма равны или аналогично пункту 4.
6) Выходит, что Р = 7×4 = 28см