Пусть трапеция ABCD : AD || BC ; AD>BC ; AD = 14см ; EF - средняя линия трапеции, E∈ [AB] , F∈ [CD] ; M и N - точки пересечении средней линии EF с диагоналями AC и BD соответственно . a) EM =NF =3 см или b) MN =3 см .
ЕF - ?
обозн. AD =a ,BC =b. EF =(a+b)/2 .
EM = NF =BC/2 =b/2 . Действительно EM и NF средние линии в треугольниках ABC и BCD соответственно(средняя линия треугольника соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине ). Аналогично из ΔABD : EN = AD/2 =a/2 * * * или из ΔACD : MF = AD/2=a/2 * * * MN =EN - EM = a/2 -b/2 =(a-b)/2 .
а) b = 2*EM =2*3 см =6 см ; EF =(a+b)/2 =(14 см+6 см)/2 =10 см . b) MN =3 см. MN =(a-b)/2 ⇒b =a -2MN ; EF =(a+b)/2 =(a +a-2MN)/2 = a -MN =14 см -3 см = 11 см.
Объяснение:
{ AM - MB = 7
{ MB = AM\2
=>
AM - (AM\2) = 7 > 2AM - AM = 14 >
AM = 7 и
MB = AM\2 = 7\2 = 3,5
11) AM =MB = AB > L A = L M = L B = 180\3 = 60 град.
AM = MB и MD _|_ AB > L AMD = L M\2 = 60\2 = 30 град. =>
DM = 2 * DE = 2 * 4 = 8
14) AKM = AEM, так как L MAK = L MAE и L AKM = L AEM =>
и L AMK = L AME => треугольники подобны по трем углам, а равны, так как гипотенуза АМ общая =>
KM = EM = 13
15) L CMB = 180 - (L C + L CBM) = 180 - (70 + 40) = 70 град.
L BMD = 180 - (L MBD + L MDB) = 180 - (40 + 90) = 50 град.
L AMD = 180 - (L CMB + L BMD) = 180 - (70 + 50) = 60 град. =>
MD = AM\2 = 14\2 = 7 Незнаю наверное правильно