У данных квадратных трехчленов равны старшие коэффициенты. Дискриминант первого трехчлена равен a*a-4b, второго b*b-5200. Чтобы у них был общий корень составим уравнение и решим его
a*a-4b=b*b-5200
a*a=b*b+4b-5200
a*a+5200=b*b+4b
a*a+5204=b*b+4b+4
a*a+5204=(b+2)(b+2)
5204=(b+2)(b+2)-a*a
5204=(b+2-a)(b+2+a)
Разность этих двух скобок равна (b+2-a)-(b+2+a)=2a. По условию a - целое число, поэтому 2a - точно четное число. Значит, обе скобки одной четности. Их произведение 5204 четно, следовательно оба множителя четны.
Далее надо разложить 5204 на простые множители: 5204=2*2*1301. Его можно разложить в произведение двух четных чисел только двумя или (-2)*(-2602 )
Из условия задачи следует, что угол при основании треугольника АВС равен 30 град. Обозначим сторону равнобедренного треугольника через а, основание через b, радиус описанной окружности через R. Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3) Известно, что: R=a^2/sqr(4a^2-b^2) Подставив значение b, получим: R=a Отсюда: АВ=2 см Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда: r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
1300 или -1300
Объяснение:
У данных квадратных трехчленов равны старшие коэффициенты. Дискриминант первого трехчлена равен a*a-4b, второго b*b-5200. Чтобы у них был общий корень составим уравнение и решим его
a*a-4b=b*b-5200
a*a=b*b+4b-5200
a*a+5200=b*b+4b
a*a+5204=b*b+4b+4
a*a+5204=(b+2)(b+2)
5204=(b+2)(b+2)-a*a
5204=(b+2-a)(b+2+a)
Разность этих двух скобок равна (b+2-a)-(b+2+a)=2a. По условию a - целое число, поэтому 2a - точно четное число. Значит, обе скобки одной четности. Их произведение 5204 четно, следовательно оба множителя четны.
Далее надо разложить 5204 на простые множители: 5204=2*2*1301. Его можно разложить в произведение двух четных чисел только двумя или (-2)*(-2602 )
Разберем первый случай.
2*2602=(b+2-a)(b+2+a)
b+2-a=2 и b+2+a=2602
(b+2+a)-(b+2-a)=2a
(b+2+a)-(b+2-a)=2602-2=2600
2a=2600
a=1300
Разберем второй случай.
(-2)*(-2602 )=(b+2-a)(b+2+a)
b+2-a=-2 и b+2+a=-2602
(b+2+a)-(b+2-a)=2a
(b+2+a)-(b+2-a)=-2600
2a=-2600
a=-1300
Итого возможны два ответа: 1300 и -1300