Задано трикутник DEF. Кут D меньше від кута F на 40 градусів, а кут Е меньше кута D в три рази. Знайтідь кути трикутника. Яка сторона більша DE чи EF? завтра кр
Пусть длина будет обозначена буквой а, а ширина - буквой b.
Рассмотрим треугольник АСД, угол Д=90 градусам.
tg(α/2)=b/a, тогда а=b/tg(α/2)
S прям-ка = a*b, значит a = S/b
S пов-ти тела = S внеш. + S внутр.
S внеш. = S усеч. конуса 1 + S усеч. конуса 2
S бок. пов-ти ус. конуса 1 = П (R+r)*b
S бок. пов-ти ус. конуса 2 = П (R+r)*a
Рассмотрим треугольник АСД, угол Д=90 градусам.
Угол АДС = 90 град. - (α/2)
Ниже буквы Е на чертеже есть пересечение черной полосы и серой, обозначь его F(вторую, которая уже есть, убери) , а ниже буквы C, где идет пересечение средней линии треугольника и перпендикуляра, обозначь его за букву O.
Исходя из прямоугольного треугольника ДАF, где угол F - прям-й
sin(90 град. - (α/2)) = AF/AD
AF=AD*cos(α/2)=b*cos(α/2)
AF=r=b*cos(α/2)
AO=R=2r=2b*cos(α/2)
S бок. пов-ти ус. конуса 1 = П*b*(2b*cos(α/2)+b*cos(α/2))=П*b*(3b*cos(α/2))=П*3b^2*cos(α/2)
S бок. пов-ти ус. конуса 2 = П*a*(2b*cos(α/2)+b*cos(α/2))=П*a*3b*cos(α/2)=3П*a*b*cos(α/2)=3П*S*cos(α/2)
S внеш. = 3П*b*cos(α/2) + 3П*S*cos(α/2)
S внутр. = S бок. пов-ти конуса 1 + S бок. пов-ти конуса 2
S бок. пов-ти конуса 1 = П*r*b=П*b*cos(α/2)*b=П*(b^2)*cos(α/2)
S бок. пов-ти конуса 2 = П*r*a=П*b*cos(α/2)*a=П*a*b*cos(α/2)=П*S*cos(α/2)
S внутр. = П*(b^2)*cos(α/2) + П*S*cos(α/2)
S пов-ти тела вращения = 3П*b*cos(α/2) + 3П*S*cos(α/2) + П*(b^2)*cos(α/2) + П*S*cos(α/2) = 2*П*(b^2)*cos(α/2)+2*П*S*cos(α/2) = 4 П*cos(α/2)*((b^2)+S)
b^2=S* tg(α/2)
S пов-ти тела вращения=4 П*cos(α/2)*(( S* tg(α/2)+S)= 4 П*S*cos(α/2)*( tg(α/2)+1)=4П*S*cos(α/2)*(sin(α/2)/cos(α/2))+1=(4*П*S*cos(α/2)*(sin(α/2)+cos(α/2))/cos(α/2)=4П*S*(sin(α/2)+sin(90 град - (α/2)) – в общем там дальше распишешь по формуле суммы косинуса и синуса и к концу придешь к ответу – 4*корень из двух*П*S*cos(45 - (α/2))
Решение: 1. Найдем катеты прямоугольного треугольника. Пусть x - 1 часть. Тогда 3х - 1 катет, 4х - второй катет. Решая уравнение по т. Пифагора, получим: 9x^2+16x^2=2500 25x^2=2500 x^2=100 x=-+10
-10 мы значение не берем по смыслу. Значит, x=10. Тогда 3х = 3*10 = 30(мм) 4х = 4*10 = 40(мм). 2. Если катет есть среднее пропорциональное для отрезка, делящаяся высотой, проведенной из вершины угла, и гипотенузы, то выразим сам этот отрезок: ac=a^2\c a - катет с - гипотенуза a с индексом с - отрезок. ac=900\50=18 А второй отрезок можем найти разностью между гипотенузой и этим отрезком: 50-18=32(мм). ответ: 18 и 32 мм
Пусть длина будет обозначена буквой а, а ширина - буквой b.
Рассмотрим треугольник АСД, угол Д=90 градусам.
tg(α/2)=b/a, тогда а=b/tg(α/2)
S прям-ка = a*b, значит a = S/b
S пов-ти тела = S внеш. + S внутр.
S внеш. = S усеч. конуса 1 + S усеч. конуса 2
S бок. пов-ти ус. конуса 1 = П (R+r)*b
S бок. пов-ти ус. конуса 2 = П (R+r)*a
Рассмотрим треугольник АСД, угол Д=90 градусам.
Угол АДС = 90 град. - (α/2)
Ниже буквы Е на чертеже есть пересечение черной полосы и серой, обозначь его F(вторую, которая уже есть, убери) , а ниже буквы C, где идет пересечение средней линии треугольника и перпендикуляра, обозначь его за букву O.
Исходя из прямоугольного треугольника ДАF, где угол F - прям-й
sin(90 град. - (α/2)) = AF/AD
AF=AD*cos(α/2)=b*cos(α/2)
AF=r=b*cos(α/2)
AO=R=2r=2b*cos(α/2)
S бок. пов-ти ус. конуса 1 = П*b*(2b*cos(α/2)+b*cos(α/2))=П*b*(3b*cos(α/2))=П*3b^2*cos(α/2)
S бок. пов-ти ус. конуса 2 = П*a*(2b*cos(α/2)+b*cos(α/2))=П*a*3b*cos(α/2)=3П*a*b*cos(α/2)=3П*S*cos(α/2)
S внеш. = 3П*b*cos(α/2) + 3П*S*cos(α/2)
S внутр. = S бок. пов-ти конуса 1 + S бок. пов-ти конуса 2
S бок. пов-ти конуса 1 = П*r*b=П*b*cos(α/2)*b=П*(b^2)*cos(α/2)
S бок. пов-ти конуса 2 = П*r*a=П*b*cos(α/2)*a=П*a*b*cos(α/2)=П*S*cos(α/2)
S внутр. = П*(b^2)*cos(α/2) + П*S*cos(α/2)
S пов-ти тела вращения = 3П*b*cos(α/2) + 3П*S*cos(α/2) + П*(b^2)*cos(α/2) + П*S*cos(α/2) = 2*П*(b^2)*cos(α/2)+2*П*S*cos(α/2) = 4 П*cos(α/2)*((b^2)+S)
b^2=S* tg(α/2)
S пов-ти тела вращения=4 П*cos(α/2)*(( S* tg(α/2)+S)= 4 П*S*cos(α/2)*( tg(α/2)+1)=4П*S*cos(α/2)*(sin(α/2)/cos(α/2))+1=(4*П*S*cos(α/2)*(sin(α/2)+cos(α/2))/cos(α/2)=4П*S*(sin(α/2)+sin(90 град - (α/2)) – в общем там дальше распишешь по формуле суммы косинуса и синуса и к концу придешь к ответу – 4*корень из двух*П*S*cos(45 - (α/2))
Объяснение:
Вот так как-то